Physics and Chemistry of Minerals

, Volume 37, Issue 5, pp 265–282

Equation of state and pressure-induced structural changes in mirabilite (Na2SO4·10H2O) determined from ab initio density functional theory calculations

  • Helen E. A. Brand
  • A. Dominic Fortes
  • Ian G. Wood
  • Lidunka Vočadlo
Original Paper


We have carried out ab initio calculations using density functional theory to determine the bulk elastic properties of mirabilite, Na2SO4·10H2O, and to obtain information on structural trends caused by the application of high pressure up to ~60 GPa. We have found that there are substantial isosymmetric discontinuous structural re-organisations at ~7.7 and ~20 GPa caused by changes in the manner in which the sodium cations are coordinated by water molecules. The low-pressure and intermediate-pressure phases both have sodium in sixfold coordination but in the high-pressure phase the coordination changes from sixfold to sevenfold. These coordination changes force a re-arrangement of the hydrogen-bond network in the crystal. The trend is towards a reduction in the number of hydrogen bonds donated to the sulphate group (from twelve down to six over the range 0–60 GPa) and an increase in hydrogen bonding amongst the Na-coordinated water molecules and the two interstitial water molecules. Ultimately, we observe proton transfers from the interstitial waters (forming OH ions) to two of the Na-coordinated waters (forming a pair of H3O+ ions). The equation of state in the athermal limit of the low-pressure phase of mirabilite, parameterised by fitting an integrated form of the third-order Birch-Murnaghan expression to the calculated energy as a function of unit-cell volume, yields the zero-pressure unit-cell volume, V0 = 1468.6(9) Å3, the incompressibility, K0 = 22.21(9) GPa, and the first pressure derivative K0′ = (∂K/∂P)0 = 5.6(1).


Mirabilite Ab initio calculations Incompressibility Salt hydrates 

Supplementary material

269_2009_331_MOESM1_ESM.doc (210 kb)
Supplementary material 1 (DOC 209 kb)
269_2009_331_MOESM2_ESM.doc (3.6 mb)
Supplementary material 2 (DOC 3.59 mb)


  1. Birch F (1952) Elasticity and constitution of the Earth’s interior. J Geophys Res 57:227–286. doi:10.1029/JZ057i002p00227 CrossRefGoogle Scholar
  2. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  3. Block EA (1913) Über die schmelzkurven einiger stoffe. Z Phys Chem Stoich Verwandt 82:403–438Google Scholar
  4. Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2004) Ions in water: the microscopic structure of concentrated NaOH solutions. J Chem Phys 120:10154–10162. doi:10.1063/1.1705572 CrossRefGoogle Scholar
  5. Brand HEA, Fortes AD, Wood IG, Alfredsson M, and Vočadlo L (2006) High-pressure properties of planetary sulfate hydrates determined from interatomic potential calculations. Lunar Planet Sci Conf 37, abstract #1310.
  6. Brand HEA, Fortes AD, Wood IG, Knight KS, Vočadlo L (2009) The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2–300 K, determined by time-of-flight neutron powder diffraction. Phys Chem Min 36:29–46. doi:10.1007/s00269-008-0256-0 CrossRefGoogle Scholar
  7. Brodale GE, Giauque WF (1958) The heat of hydration of sodium sulphate. Low temperature heat capacity and entropy of sodium sulphate decahydrate. J Am Chem Soc 80:2042–2044. doi:10.1021/ja01542a003 CrossRefGoogle Scholar
  8. Carlson RW, Calvin W, Dalton JB, Hansen GB, Hudson R, Johnson RE, McCord TB, and Moore MH (2007) Europa’s surface compositions: what we know, what we would like to know, and how we can find out. EOS Trans Am Geophys Union 88(54), Fall Meeting Suppl., abstract P51E-02Google Scholar
  9. Colman SM, Kelts KR, Dinter DA (2002) Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy. Sed Geol 148:61–78. doi:10.1016/S0037-0738(01)00210-X CrossRefGoogle Scholar
  10. Dalton JB III (2007) Linear mixture modelling of Europa’s non-ice material based on cryogenic laboratory spectroscopy. Geophys Res Lett 34:L21205. doi:10.1029/2007GL031497 CrossRefGoogle Scholar
  11. Dalton JB, Prieto-Ballesteros O, Kargel JS, Jamieson CS, Jolivet J, Quinn R (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177:472–490. doi:10.1016/j.icarus.2005.02.023 CrossRefGoogle Scholar
  12. Dougherty AJ, Hogenboom DL, Kargel JS, and Zheng YF (2006) Volumetric and optical studies of high pressure phases of Na2SO4·10H2O with applications to Europa. Lunar and Planetary Science conference, 37, #1732Google Scholar
  13. Finger LW, Kroecker M, Toby BH (2007) DRAWxtl, an open-source computer program to produce crystal structure drawings. J Appl Cryst 40:188–192. doi:10.1107/S0021889806051557 CrossRefGoogle Scholar
  14. Fortes A (2004) Computational and experimental studies of solids in the ammonia-water system. Dissertation, University of London, p 230Google Scholar
  15. Fortes AD, Wood IG, Brodholt JP, Vočadlo L (2001) Ab initio simulation of ammonia monohydrate (NH3·H2O) and ammonium hydroxide (NH4OH). J Chem Phys 115:7006–7014. doi:10.1063/1.1398104 CrossRefGoogle Scholar
  16. Fortes AD, Wood IG, Brodholt JP, Vočadlo L (2003a) Ab initio simulation of the ice II structure. J Chem Phys 119:4567–4572. doi:10.1063/1.1593630 CrossRefGoogle Scholar
  17. Fortes AD, Wood IG, Brodholt JP, Vočadlo L (2003b) Hydrogen bonding in solid ammonia from density-functional theory calculations. J Chem Phys 118:5987–5994. doi:10.1063/1.1555630 CrossRefGoogle Scholar
  18. Fortes AD, Wood IG, Brodholt JP, Vočadlo L (2003c) The structure, ordering, and equation of state of ammonia dihydrate (NH3·2H2O). Icarus 162:59–73. doi:10.1016/S0019-1035(02)00073-8 CrossRefGoogle Scholar
  19. Fortes AD, Wood IG, Vočadlo L, Brand HEA, Grindrod PM, Joy KH, and Tucker MG (2006a) The phase behaviour of epsomite (MgSO4·7H2O) to 50 kbar: planetary implications. Lunar Planet Sci Conf 37, abstract #1029.
  20. Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS (2006b) The thermoelastic properties of MgSO4·7D2O (epsomite) from powder neutron diffraction and ab initio calculations. Eur J Mineral 18:449–462. doi:10.1127/0935-1221/2006/0018-0449 CrossRefGoogle Scholar
  21. Fortes AD, Wood IG, Knight KS (2006c) Neutron powder diffraction studies of sulfuric acid hydrates. I: The structure of sulfuric acid hemitriskaidekahydrate, D2SO4·6½D2O. J Chem Phys 125:144510. doi:10.1063/1.2356860 CrossRefGoogle Scholar
  22. Fortes AD, Grindrod PM, Trickett SK, Vočadlo L (2007a) Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188:139–153. doi:10.1016/j.icarus.2006.11.002 CrossRefGoogle Scholar
  23. Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS, Marshall WG, Tucker MG, Fernandez-Alonso F (2007b) The high-pressure phase diagram of ammonia dihydrate. High Press Res 27:201–212. doi:10.1080/08957950701265029 CrossRefGoogle Scholar
  24. Fortes AD, Wood IG, Vočadlo L, Knight KS (2008a) Neutron diffraction studies of sulfuric acid hydrates. II: The structure, thermal expansion, incompressiblity and polymorphism of sulfuric acid tetrahydrate (D2SO4·4D2O). J Chem Phys 128:054506. doi:10.1063/1.2827474 CrossRefGoogle Scholar
  25. Fortes AD, Wood IG, Vočadlo L, Knight KS, Marshall WG, Tucker MG, and Fernandez-Alonso F (2009) Phase behaviour and thermoelastic properties of perdeuterated ammonia hydrate and ice polymorphs from 0 to 2 GPa. J Appl Cryst 42:846–866. doi:10.1107/S0021889809027897 CrossRefGoogle Scholar
  26. Fortes AD, Wood IG, and Knight KS (2008b) The crystal structure and thermal expansion tensor of MgSO4·11D2O (meridianiite) determined by neutron powder diffraction Phys Chem Min 35:207–221. doi:10.1007/s00269-008-0214-x Google Scholar
  27. Geller A (1924) Über das verhalten verschiedener minerale der salzlager bei hohen drucken und wechselnden temperaturen. Z Krist 60:415–472Google Scholar
  28. Giguère PA (1983) Les liaisons hydrogène dans les solutions aqueuses dalcalis. Rev Chim Min 20:588–594CrossRefGoogle Scholar
  29. Glauber JH (1658) Tractatus de natura salium. AmsterdamGoogle Scholar
  30. Goudie AS, Viles H (1997) Salt weathering hazards. Wiley, ChichesterGoogle Scholar
  31. Hall C, Hamilton A (2008) The heptahydrate of sodium sulfate: does it have a role in terrestrial and planetary geochemistry? Icarus 198:277–279. doi:10.1016/j.icarus.2008.07.001 CrossRefGoogle Scholar
  32. Hamilton A, Hall C (2008) Sodium sulfate heptahydrate: a synchrotron energy-dispersive diffraction study of an elusive metastable hydrated salt. J Anal Atom Spectrom 23:840–844. doi:10.1039/b716734b CrossRefGoogle Scholar
  33. Hardie LA (1991) On the significance of evaporites. Ann Rev Earth Planet Sci 19:131–168. doi:10.1146/annurev.ea.19.050191.001023 CrossRefGoogle Scholar
  34. Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation–anion polyhedra. J Geophys Res 84:6723–6728. doi:10.1029/JB084iB12p06723 CrossRefGoogle Scholar
  35. Hazen RM, Downs RT, Prewitt CT (2000) Principles of comparative crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, Washington DCGoogle Scholar
  36. Hermida-Ramon JM, Karlström G (2004) Study of the hydronium ion in water. A combined quantum chemical and statistical mechanical treatment. J Mol Struct Theochem 712:167–173. doi:10.1016/j.theochem.2004.10.017 CrossRefGoogle Scholar
  37. Hogenboom DL, Kargel JS, and Pahalawatta PV (1999) Densities and Phase relationships at high pressures of the sodium sulfate-water system. Lunar and Planetary Science conference 30, abstract #1793Google Scholar
  38. Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136:B864–B871. doi:10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  39. Kargel JS (1991) Brine volcanism and the interior structure of asteroids and icy satellites. Icarus 94:369–390. doi:10.1016/0019-1035(91)90235-L CrossRefGoogle Scholar
  40. Keys JR, Williams K (1981) Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochim Cosmochim Acta 45:2299–2309. doi:10.1016/0016-7037(81)90084-3 CrossRefGoogle Scholar
  41. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  42. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  43. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  44. Kryukov PA, Manikhin VI (1960) Characteristics of the melting of Glauber salt at high pressures. Russ Chem Bull 9:2077–2078. doi:10.1007/BF00912067 CrossRefGoogle Scholar
  45. Langlet J, Bergès J, Reinhardt P (2004) An interesting property of the Perdew–Wang 91 density functional. Chem Phys Lett 396:10–15. doi:10.1016/j.cplett.2004.07.093 CrossRefGoogle Scholar
  46. Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Cryst Sect B Struct Sci 34:3502–3510. doi:10.1107/S0567740878011504 CrossRefGoogle Scholar
  47. Markovitch O, Agmon N (2007) Structure and energetics of the hydronium hydration shells. J Phys Chem A 111:2253–2256. doi:10.1021/jp068960g CrossRefGoogle Scholar
  48. Marliacy P, Solimando R, Bouroukba M, Schuffenecker L (2000) Thermodynamics of crystallization of sodium sulfate decahydrate in H2O-NaCl-Na2SO4: application to Na2SO4.10H2O-based latent heat storage materials. Thermochim Acta 344:85–94. doi:10.1016/S0040-6031(99)00331-7 CrossRefGoogle Scholar
  49. Marzal RME, Scherer GW (2008) Crystallisation of sodium sulfate salts in limestone. Environ Geol 56:605–621. doi:10.1007/s00254-008-1441-7 CrossRefGoogle Scholar
  50. McCarthy AC (2007) Behavior of sodium clinopyroxenes under compression. Dissertation, University of ArizonaGoogle Scholar
  51. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  52. Ohno H, Igarashi M, Hondoh T (2006) Characterisation of salt inclusions in polar ice from Dome Fuji, East Antarctica. Geophys Res Lett 33:L075050. doi:10.1029/2006GL025774 CrossRefGoogle Scholar
  53. Orlando TM, McCord TB, Grieves GA (2005) The chemical nature of Europa’s surface material and the relation to a subsurface ocean. Icarus 177:528–533. doi:10.1016/j.icarus.2005.05.009 CrossRefGoogle Scholar
  54. Oswald ID, Hamilton H, Hall C, Marshall WG, Prior TJ, Pulham CR (2009) In situ characterization of elusive salt hydrates—the crystal structure of the heptahydrate and octahydrate of sodium sulfate. J Am Chem Soc 130:17795–17800. doi:10.1021/ja805429m CrossRefGoogle Scholar
  55. Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy, 7th edn, vol II. pp 439–442Google Scholar
  56. Perdew JP (1991) In: Zeische P, Eschrig H (eds) Electronic structure of solids. Akademie, BerlinGoogle Scholar
  57. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron–gas correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244 CrossRefGoogle Scholar
  58. Pickard CJ, Needs RJ (2008) Highly compressed ammonia forms an ionic crystal. Nat Geosci 7:775–779. doi:10.1038/nmat2261 Google Scholar
  59. Poirier JP, Tarantola A (1998) A logarithmic equation of state. Phys Earth Planet Inter 109:1–8. doi:10.1016/S0031-9201(98)00112-5 CrossRefGoogle Scholar
  60. Putz H, Schoen JC, Jansen M (1999) Combined method for “ab initio” structure solution from powder diffraction data. J Appl Cryst  32:864–870. doi:10.1107/S0021889899006615 CrossRefGoogle Scholar
  61. Rijniers LA, Huinink HP, Pel L, Kopinga K (2005) Experimental evidence of crystallisation pressure inside porous media. Phys Rev Lett 94:075503. doi:10.1103/PhysRevLett.94.075503 CrossRefGoogle Scholar
  62. Ripmeester JA, Ratcliffe CI, Dutrizac JE, Jambor JL (1986) Hydronium ion in the alunite-jarosite group. Can Min 24:435–447Google Scholar
  63. Ruben HW, Templeton DH, Rosenstein RD, Olovsson I (1961) Crystal structure and entropy of sodium sulfate decahydrate. J Am Chem Soc 83:820–824. doi:10.1021/ja01465a019 CrossRefGoogle Scholar
  64. Sood RR, Stager RA (1966) Pressure-induced dehydration reactions and transitions in inorganic hydrates. Science 154:388–390. doi:10.1126/science.154.3747.388 CrossRefGoogle Scholar
  65. Tammann G (1929) Über die Schmelzkurven einiger Salzhydrate. Z Anorg Allgem Chem 178:309–316. doi:10.1002/zaac.19291790114 CrossRefGoogle Scholar
  66. Tanaka Y, Hada S, Makita T, Moritoki M (1992) Effect of pressure on the solid–liquid phase equilibria in (water + sodium sulfate) system. Fluid Phase Equil 76:163–173. doi:10.1016/0378-3812(92)85085-M CrossRefGoogle Scholar
  67. Tsui N, Flatt RJ, Scherer GW (2003) Crystallization damage by sodium sulphate. J Cult Heritage 4:109–115. doi:10.1016/S1296-2074(03)00022-0 CrossRefGoogle Scholar
  68. Tsuzuki S, Lüthi HP (2001) Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J Chem Phys 114:3949–3957. doi:10.1063/1.1344891 CrossRefGoogle Scholar
  69. Wallace DG (1998) Thermodynamics of crystals. Dover, New YorkGoogle Scholar
  70. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44:13298–13307. doi:10.1103/PhysRevB.44.13298 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Helen E. A. Brand
    • 1
    • 2
    • 3
  • A. Dominic Fortes
    • 1
    • 2
  • Ian G. Wood
    • 1
    • 2
  • Lidunka Vočadlo
    • 1
    • 2
  1. 1.Department of Earth SciencesUniversity College LondonLondonUK
  2. 2.Center for Planetary Sciences at UCL/BirkbeckLondonUK
  3. 3.CSIRO MineralsClaytonAustralia

Personalised recommendations