Physics and Chemistry of Minerals

, Volume 37, Issue 3, pp 129–136

The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa

  • Daisuke Nishio-Hamane
  • Asa Shimizu
  • Ritsuko Nakahira
  • Ken Niwa
  • Asami Sano-Furukawa
  • Taku Okada
  • Takehiko Yagi
  • Takumi Kikegawa
Original Paper

Abstract

The stability and equation of state for the cotunnite phase in TiO2 were investigated up to a pressure of about 70 GPa by high-pressure in situ X-ray diffraction measurements using a laser-heated diamond anvil cell. The transition sequence under high pressure was rutile → α-PbO2 phase → baddeleyite phase → OI phase → cotunnite phase with increasing pressure. The cotunnite phase was the most stable phase at pressures from 40 GPa to at least 70 GPa. The equation of state parameters for the cotunnite phase were established on the platinum scale using the volume data at pressures of 37–68 GPa after laser annealing, in which the St value, an indicator of the magnitude of the uniaxial stress component in the samples, indicates that these measurements were performed under quasi-hydrostatic conditions. The third-order Birch-Murnaghan equation of state at K0′ = 4.25 yields V0 = 15.14(5) cm3/mol and K0 = 294(9), and the second-order Birch-Murnaghan equation of state yields V0 = 15.11(5) cm3/mol and K0 = 306(9). Therefore, we conclude that the bulk modulus for the cotunnite phase is not comparable to that of diamond.

Keywords

TiO2 Cotunnite Fluorite Phase relation Equation of state High pressure 

References

  1. Ahuja R, Dubrovinsky LS (2002a) Cotunnite-structured titanium dioxide and the hardest known oxide. High Press Res 22:429–433. doi:10.1080/08957950212787 CrossRefGoogle Scholar
  2. Ahuja R, Dubrovinsky LS (2002b) High-pressure structural phase transition in TiO2 and synthesis of the hardest know oxide. J Phys Condens Matter 14:10995–10999CrossRefGoogle Scholar
  3. Al-Khatatbeh Y, Lee KKM, Kiefer B (2009) High-pressure behavior of TiO2 as determined by experiment and theory. Phys Rev B 79:134111CrossRefGoogle Scholar
  4. Arlt T, Bermejo M, Blanco MA, Gerward L, Jiang JZ, Olsen JS, Recio JM (2000) High-pressure polymorphs of anatase TiO2. Phys Rev B 61:14414–14419CrossRefGoogle Scholar
  5. Caravaca MA, Miño JC, Pérez VJ, Casali RA, Ponce CA (2009) Ab intio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure. J Phys Condens Matter 21:015501. doi:10.1088/0953-8984/21/1/015501 CrossRefGoogle Scholar
  6. Decker DL (1971) High-pressure equation of state for NaCl, KCl, and CsCl. J Appl Phys 42:3239–3244CrossRefGoogle Scholar
  7. Dubrovinskaia NA, Dubrovinsky LS, Ahuja R, Prokopenko VB, Dmitriev V, Weber HP, Osorio-Guillen JM, Johansson B (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87:27550. doi:10.1103/PhysRevLett.87.275501 CrossRefGoogle Scholar
  8. Dubrovinskaia NA, Dubrovinsky LS, Swamy V, Ahuja R (2002) Cotunnite-structured titanium dioxide. High Press Res 22:391–394. doi:10.1080/08957950212781 CrossRefGoogle Scholar
  9. Dubrovinsky LS, Dubrovinskaia NA, Swamy V, Muscat J, Harrison NM, Ahuja R, Holm B, Johansson B (2001) The hardest known oxide. Nature 410:653–654CrossRefGoogle Scholar
  10. Gerward L, Olsen LS (1997) Post-rutile high-pressure phase in TiO2. J Appl Cryst 30:259–264CrossRefGoogle Scholar
  11. Haines J, Lėger M (1993) X-ray diffraction study of TiO2 up to 49 GPa. Physica B 192:223–237CrossRefGoogle Scholar
  12. Haines J, Lėger JM, Chateau C (1993) X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides. Phys Rev B 55:11144–11154CrossRefGoogle Scholar
  13. Heinz DL, Jeanloz R (1984) Compression of the B2 high-pressure phase of NaCl. Phys Rev B 30:6045–6050CrossRefGoogle Scholar
  14. Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967CrossRefGoogle Scholar
  15. Lagarec K, Desgreniers S (1995) Raman study of single crystal anatase TiO2 up to 70 GPa. Solid State Commun 94:519–524CrossRefGoogle Scholar
  16. Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49:3276–3283CrossRefGoogle Scholar
  17. Mattesini M, de Almeida JS, Dubrovinsky L, Dubrovinskaia N, Johansson B, Ahuja R (2004) High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys Rev B 70:212101. doi:10.1103/PhysRevB.70.212101 CrossRefGoogle Scholar
  18. Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65:224112. doi:10.1103/PhysRevB.65.224112 CrossRefGoogle Scholar
  19. Olsen S, Gerward L, Jiang JD (1999) On the rutile/α-PbO2-type phase boundary of TiO2. J Phys Chem Solids 60:229–233CrossRefGoogle Scholar
  20. Sato-Sorensen Y (1983) Phase-transitions and equations of state for the sodium-halides: NaF, NaCl, NaBr, and NaI. J Geophys Res 88:3543–3548CrossRefGoogle Scholar
  21. Shim SH, Duffy TS, Shen G (2000) The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Phys Earth Planet Inter 120:327–338CrossRefGoogle Scholar
  22. Sung CM, Sung M (1996) Carbon nitride and other speculative superhard materials. Mater Chem Phys 43:1–18CrossRefGoogle Scholar
  23. Swamy V, Dubrovinskaia NA, Dubrovinsky LS (2002) Compressibility of baddeleyite-type TiO2 from static compression to 40 GPa. J Alloy Compd 340:46–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Daisuke Nishio-Hamane
    • 1
  • Asa Shimizu
    • 1
  • Ritsuko Nakahira
    • 1
  • Ken Niwa
    • 2
  • Asami Sano-Furukawa
    • 3
  • Taku Okada
    • 1
  • Takehiko Yagi
    • 1
  • Takumi Kikegawa
    • 4
  1. 1.The Institute for Solid State PhysicsThe University of TokyoKashiwaJapan
  2. 2.Department of Materials Science and EngineeringNagoya UniversityNagoyaJapan
  3. 3.Quantum Beam Science DirectorateJapan Atomic Energy AgencyTokaiJapan
  4. 4.Photon FactoryHigh Energy Accelerator Research OrganizationTsukubaJapan

Personalised recommendations