Physics and Chemistry of Minerals

, Volume 36, Issue 9, pp 489–509 | Cite as

IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs

  • Sylvia-Monique ThomasEmail author
  • Monika Koch-Müller
  • Patrick Reichart
  • Dieter Rhede
  • Rainer Thomas
  • Richard Wirth
  • Stanislav Matsyuk
Original Paper


Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\)), but it varies as a function of structure (coesite ε = 214,000 ± 14,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\); stishovite ε = 485,000 ± 109,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\)). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.


Absorption coefficients IR spectroscopy Raman spectroscopy Pp-scattering SIMS Nominally anhydrous minerals 



The authors wish to thank B. Wunder, G. Berger, M. Kreplin, R. Schulz, H. Steigert, U. Schade and M. Schmidt for help with the experiments, sample preparation, X-ray diffraction, and synchrotron IR measurements. C. Schmidt and W. Heinrich are thanked for helpful comments and discussions. We are grateful to W. van Westrenen, who kindly provided sample WIM04. This project was supported by the Maier-Leibnitz-Laboratorium of LMU and TU München. Reviews of M. Rieder, M. M. Hirschmann and E. Libowitzky are greatly appreciated. Finally, thanks to C. R. Bina for help with the English.


  1. Arredondo EH, Rossman GR (2002) Feasibility of determining the quantitative OH content of garnets with Raman spectroscopy. Am Mineral 87:307–311Google Scholar
  2. Aubaud C, Withers AC, Hirschmann MM, Guan Y, Leshin LA, Mackwell SJ, Bell DR (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828. doi: 10.2138/am.2007.2248 CrossRefGoogle Scholar
  3. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubitlity and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19:460–471. doi: 10.1007/BF00203186 CrossRefGoogle Scholar
  4. Behrens H, Roux J, Neuville DR, Siemann M (2006) Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy. Chem Geol 229:96–112. doi: 10.1016/j.chemgeo.2006.01.014 CrossRefGoogle Scholar
  5. Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxene. Am Mineral 80:465–474Google Scholar
  6. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2):2105–2113. doi: 10.1029/2001JB000679 CrossRefGoogle Scholar
  7. Bell DR, Rossman GR, Moore RO (2004) Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J Petrol 45(8):1539–1564. doi: 10.1093/petrology/egh015 CrossRefGoogle Scholar
  8. Beran A, Libowitzky E (2006) Water in natural mantle minerals. II: Olivine, garnet and accessory minerals. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 169–191Google Scholar
  9. Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221. doi: 10.1016/S0012-821X(00)00244-2 CrossRefGoogle Scholar
  10. Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kbar and temperatures up to 1740°C. J Geophys Res 65:741–748. doi: 10.1029/JZ065i002p00741 CrossRefGoogle Scholar
  11. Bromiley GD, Bromiley FA, Bromiley DW (2006) On the mechanisms for H and Al incorporation in stishovite. Phys Chem Miner 33:613–621. doi: 10.1007/s00269-006-0107-9 CrossRefGoogle Scholar
  12. Brunner GO, Wondratschek H, Laves F (1961) Ultrarotuntersuchung über den Einbau von H in natürlichem Quarz. Z Elektrochem 65:735–750Google Scholar
  13. Chabiron A, Pironon J, Massare D (2004) Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contrib Mineral Petrol 146:485–492. doi: 10.1007/s00410-003-0510-x CrossRefGoogle Scholar
  14. Chakraborty D, Lehmann G (1976) On the structures and orientations of hydrogen defects in natural and synthetic quartz crystals. Phys Status Solidi 34:467–474. doi: 10.1002/pssa.2210340206 CrossRefGoogle Scholar
  15. Cho H, Rossman GR (1993) Single-crystal NMR studies of low-concentration hydrous species in minerals: grossular garnet. Am Mineral 78:1149–1164Google Scholar
  16. Deloule E, Paillat O, Pichavant M, Scaillet B (1995) Ion microprobe determination of water in silicate glasses: methods and applications. Chem Geol 125:19–28. doi: 10.1016/0009-2541(95)00070-3 CrossRefGoogle Scholar
  17. Deon F, Koch-Müller M, Hövelmann J, Rhede D, Thomas S-M (2009) Coupled boron and hydrogen incorporation in coesite. Eur J Mineral. doi: 10.1127/0935-1221/2008/0020-1843
  18. Di Muro A, Giordano D, Villemant B, Montagnac G, Romano C (2006a) Influence of composition and thermal history of volcanic glasses on water content determination by microRaman spectrometry. Appl Geochem 21:802–812. doi: 10.1016/j.apgeochem.2006.02.009 CrossRefGoogle Scholar
  19. Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006b) Quantification of water content and speciation in natural silicic glasses (phonolites, dacites, rhyolites) by confocal microRaman spectrometry. Geochim Cosmochim Acta 70:2868–2884. doi: 10.1016/j.gca.2006.02.016 CrossRefGoogle Scholar
  20. Everall NJ (2000) Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc 54:773–782. doi: 10.1366/0003702001950382 CrossRefGoogle Scholar
  21. Gibbs GV, Prewitt CT, Baldwin KJ (1977) A study of the structural chemistry of coesite. Z Kristallogr 145:108–123CrossRefGoogle Scholar
  22. Gibbs G, Cox D, Ross N (2004) A modeling of the structure and favourable H-docking sites and defects for the high-pressure silica polymorph stishovite. Phys Chem Miner 31:232–239. doi: 10.1007/s00269-004-0379-x CrossRefGoogle Scholar
  23. Gose J, Reichart P, Dollinger G, Schmädicke E (2008) Water in natural olivine—determined by proton-proton scattering analysis. Am Mineral 93:1613–1619. doi: 10.2138/am.2008.2835 CrossRefGoogle Scholar
  24. Hammer VMF, Beran A, Endisch D, Rauch F (1996) OH concentrations in natural titanites determined by FTIR spectroscopy and nuclear reaction analysis. Eur J Mineral 8:281–288Google Scholar
  25. Hauri E, Wang J, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in volcanic glasses. 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114. doi: 10.1016/S0009-2541(01)00375-8 CrossRefGoogle Scholar
  26. Hervig RL, Stanton TR, Williams P (1987) Ion probe microanalyses of hydrogen in glasses and minerals. EOS 68:441Google Scholar
  27. Hill RJ, Newton MD, Gibbs GV (1983) A crystal chemical study of stishovite. J Solid State Chem 47:185–200. doi: 10.1016/0022-4596(83)90007-5 CrossRefGoogle Scholar
  28. Hösch A (1999) Schwingungsspektroskopie von OH führenden Defekten in Granat. Dissertation, TU BerlinGoogle Scholar
  29. Huang X, Xu Y, Karato S (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749. doi: 10.1038/nature03426 CrossRefGoogle Scholar
  30. Johnson EA (2006) Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 117–154Google Scholar
  31. Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911Google Scholar
  32. Karampelas S, Fritsch E, Zorba T, Paraskevopoulos KM, Sklavounos S (2005) Distinguishing natural from synthetic amethyst: the presence and shape of the 3595 cm−1 peak. Mineral Petrol 85:45–52. doi: 10.1007/s00710-005-0101-9 CrossRefGoogle Scholar
  33. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273. doi: 10.1038/347272a0 CrossRefGoogle Scholar
  34. Kats A (1962) Hydrogen in alpha quartz. Phill Res Rep 17:133–279Google Scholar
  35. Kats A, Haven Y, Stevels JM (1962) Hydroxyl groups in α-quartz. Phys Chem Glasses 3:69–75Google Scholar
  36. Keppler H, Rauch F (2000) Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR spectroscopy: the effect of sample preparation. Phys Chem Miner 27:371–376. doi: 10.1007/s002699900070 CrossRefGoogle Scholar
  37. Koch-Müller M, Langer K (1998) Quantitative IR spectroscopic determination of the component H2O in staurolite. Eur J Mineral 10:1267–1273Google Scholar
  38. Koch-Müller M, Langer K, Behrens H, Schuck G (1997) Crystal chemistry and infrared spectroscopy in the OH-stretching region of synthetic staurolites. Eur J Mineral 9:67–82Google Scholar
  39. Koch-Müller M, Fei Y, Hauri E, Liu Z (2001) Location and quantitative analysis of OH in coesite. Phys Chem Miner 28:693–705. doi: 10.1007/s002690100195 CrossRefGoogle Scholar
  40. Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in synthetic and natural coesite. Am Mineral 88:1436–1445Google Scholar
  41. Koch-Müller M, Matsyuk SS, Rhede D, Wirth R, Khisina N (2006) Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Phys Chem Miner 33:276–287. doi: 10.1007/s00269-006-0079-9 CrossRefGoogle Scholar
  42. Koga K, Hauri E, Hirschmann M, Bell D (2003) Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst 4:1019–1039. doi: 10.1029/2002GC000378 CrossRefGoogle Scholar
  43. Kohlrausch KWF (1943) Ramanspektren. Akademische Verlagsgesellschaft. Becher & Erler, LeipzigGoogle Scholar
  44. Kohlstedt DL (2006) The role of water in high-temperature rock deformation. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 377–396Google Scholar
  45. Kohn SC (1996) Solubility of H2O in nominally anhydrous mantle minerals using 1H MAS NMR. Am Mineral 81:1523–1526Google Scholar
  46. Kronenberg AK (1994) Hydrogen speciation and chemical weakening of quartz. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behavior, geochemistry and materials applications, Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, DC, pp 123-176Google Scholar
  47. Kubicki JD, Sykes D, Rossman GR (1993) Calculated trends of OH infrared stretching vibrations with composition and structure in alumosilicate molecules. Phys Chem Miner 20:425–432Google Scholar
  48. Kurosawa M, Yurimoto H, Matsumoto K, Sueno S (1992) Hydrogen analysis of mantle olivine by secondary ion mass spectrometry. In: Xyono Y, Manghnani MH (eds) High-pressure research: appplication to earth and planetary sciences. Terra Sci, Tokyo, pp 283–287Google Scholar
  49. Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851Google Scholar
  50. Larson AC, von Dreele RB (1987) GSAS—general structure and analysis system. Technical report LA-UR-86-748. Los Alamos National Laboratory. Los AlamosGoogle Scholar
  51. Le Page Y, Donnay G (1976) Refinement of the crystal structure of low-quartz. Acta Crystallogr B 32:2456–2459. doi: 10.1107/S0567740876007966 CrossRefGoogle Scholar
  52. Li W, Lu R, Yang H, Prewitt CT, Fei Y (1997) Hydrogen in synthetic coesite crystals. EOS 78:736Google Scholar
  53. Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Mh Chem 130:1047–1059Google Scholar
  54. Libowitzky E, Beran A (2004) IR spectroscopic characterisation of hydrous species in minerals. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU Notes in Mineralogy, vol 6. Eötvös University Press, Budapest, Hungary, pp 227–279Google Scholar
  55. Libowitzky E, Rossman GR (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Phys Chem Miner 23:319–327. doi: 10.1007/BF00199497 CrossRefGoogle Scholar
  56. Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115Google Scholar
  57. Litasov KD, Kagi H, Shatskiy A, Ohtani E, Lakshtanov DL, Bass JD, Ito E (2007) High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth Planet Sci Lett 262:620–634. doi: 10.1016/j.epsl.2007.08.015 CrossRefGoogle Scholar
  58. Lodziana Z, Parlinski K, Hafner J (2001) Ab initio studies of high-pressure transformations in GeO2. Phys Rev B 63:134106-1–134106-7CrossRefGoogle Scholar
  59. Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90:11319–11333. doi: 10.1029/JB090iB13p11319 CrossRefGoogle Scholar
  60. Maldener J, Rauch F, Gavranic M, Beran A (2001) OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy. Mineral Petrol 71:21–29. doi: 10.1007/s007100170043 CrossRefGoogle Scholar
  61. Maldener J, Hösch A, Langer K, Rauch F (2003) Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Phys Chem Miner 30:337–344. doi: 10.1007/s00269-003-0321-7 CrossRefGoogle Scholar
  62. Miller GH, Rossman GR, Harlow GE (1987) The natural occurrence of hydroxide in olivine. Phys Chem Miner 14:461–472. doi: 10.1007/BF00628824 CrossRefGoogle Scholar
  63. Moritz H (1999) Messung des Konzentrationsfeldes verdunstender binärer Mikropartikel mittels linearer Raman-Spektroskopie. Fortschrittsberichte, vol 3. VDI-Verlag, DüsseldorfGoogle Scholar
  64. Mosenfelder JL (2000) Pressure dependence of hydroxyl solubility in coesite. Phys Chem Miner 27:610–617. doi: 10.1007/s002690000105 CrossRefGoogle Scholar
  65. Panero W, Benedetti L, Jeanloz R (2003) Transport of water into the lower mantle: role of stishovite. J Geophys Res 108:2039–2048. doi: 10.1029/2002JB002053 CrossRefGoogle Scholar
  66. Pankrath R (1991) Polarized IR spectra of synthetic smoky quartz. Phys Chem Miner 17:681–689CrossRefGoogle Scholar
  67. Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral (Paris) 105:20–29Google Scholar
  68. Pawley AR, McMillan PF, Holloway JR (1993) Hydrogen in stishovite, with implications for mantle water content. Science 261:1024–1026. doi: 10.1126/science.261.5124.1024 CrossRefGoogle Scholar
  69. Reichart P, Datzmann G, Hauptner A, Hertenberger R, Wild C, Dollinger G (2004) Three-dimensional hydrogen microscopy in diamond. Science 306:1537–1540. doi: 10.1126/science.1102910 CrossRefGoogle Scholar
  70. Rhede D, Wiedenbeck M (2006) SIMS quantification of very low hydrogen contents. Appl Surf Sci 252:7152–7154. doi: 10.1016/j.apsusc.2006.02.245 CrossRefGoogle Scholar
  71. Rossman GR (1988) Vibrational spectroscopy of hydrous components. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in Mineralogy, vol 18. Mineralogical Society of America, Washington, DC, pp 193–206Google Scholar
  72. Rossman GR (2006) Analytical methods for measuring water in nominally anhydrous minerals. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 1–28Google Scholar
  73. Rossman GR, Aines RD (1991) The hydrous component in garnets: grossular-hydrogrossular. Am Mineral 76:1153–1164Google Scholar
  74. Rovetta MR, Blacic JD, Hervig RL, Holloway JD (1989) An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques. J Geophys Res 94:5840–5850. doi: 10.1029/JB094iB05p05840 CrossRefGoogle Scholar
  75. Schabel W (2005) Inverse Mikro-Raman-Spektroskopie- Eine neue Messmethode zur Untersuchung lokaler Stofftransportvorgänge in dünnen Filmen, Folien und Membranen. Chem Ing Tech 77:1915–1926. doi: 10.1002/cite.200500060 CrossRefGoogle Scholar
  76. Severs MJ, Azbej T, Thomas JB, Mandeville CW, Bodnar RJ (2007) Experimental determination of H2O loss from melt inclusions during laboratory heating: evidence from Raman spectroscopy. Chem Geol 237:358–371. doi: 10.1016/j.chemgeo.2006.07.008 CrossRefGoogle Scholar
  77. Skoog DA, Leary JJ (1992) Principles of instrumental analysis. Saunders College Publishing, FloridaGoogle Scholar
  78. Smyth JR, Swope RJ, Pawley AR (1995) H in rutile-type compounds: II. Crystal chemistry of Al substitution in H-bearing stishovite. Am Mineral 80:454–456Google Scholar
  79. Staats PA, Kopp OC (1974) Studies on the origin of the 3400 cm−1 region infrared bands of synthetic and natural α-quartz. J Phys Chem Solids 35:1029–1033. doi: 10.1016/S0022-3697(74)80118-6 CrossRefGoogle Scholar
  80. Strens RGJ (1974) The common chain, ribbon, and ring silicates. In: Farmer VC (ed) The infrared spectra of minerals, vol 4. Mineralogical Society, London, pp 305–330Google Scholar
  81. Sweeney RJ, Prozesky VM, Springhorn KA (1997) Use of elastic recoil detection analysis (ERDA) microbeam technique for the quantitative determination of hydrogen in materials and hydrogen partitioning between olivine and melt at high pressures. Geochim Cosmochim Acta 61:101–113. doi: 10.1016/S0016-7037(96)00340-7 CrossRefGoogle Scholar
  82. Sykes D, Rossman GR, Veblen DR, Grew ES (1994) Enhanced H and F incorporation in borian olivine. Am Mineral 79:904–908Google Scholar
  83. Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85:868–872Google Scholar
  84. Thomas R (2002) Determination of water contents in melt inclusions by laser Raman spectroscopy. Workshop-Short course on volcanic systems, geochemical and geophysical monitoring. In: De Vivo B, Bodnar RJ (eds) Proceedings of melt inclusions: methods, applications and problems. Napoli, Italy, pp 211–216Google Scholar
  85. Thomas R, Davidson P (2006) Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review. Z Geol Wiss Berlin 34:159–163Google Scholar
  86. Thomas R, Kamenetsky VS, Davidson P (2006) Laser Raman spectroscopic measurements of water in unexposed glass inclusions. Am Mineral 91:467–470. doi: 10.2138/am.2006.2107 CrossRefGoogle Scholar
  87. Thomas S-M, Thomas R, Davidson P, Reichart P, Koch-Müller M, Dollinger G (2008) Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets. Am Mineral 93:1550–1557. doi: 10.2138/am.2008.2834 CrossRefGoogle Scholar
  88. Tröger WE (1956) Tabellen zur optischen Bestimmung der gesteinsbildenden Minerale, Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller) StuttgartGoogle Scholar
  89. Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980. doi: 10.1038/nature05256 CrossRefGoogle Scholar
  90. Wegdén M, Kristiansson P, Skogby H, Auzelyte V, Elfman M, Malmqvist KG, Nilsson C, Pallon J, Shariff A (2005) Hydrogen depth profiling by p-p scattering in nominally anhydrous minerals. Nucl Instrum Methods Phys Res B 231:524–529. doi: 10.1016/j.nimb.2005.01.111 CrossRefGoogle Scholar
  91. Wiedenbeck M, Rhede D, Lieckefett R, Witzki H (2004) Cryogenic SIMS and its applications in the Earth sciences. Appl Surf Sci 231–232:888–892. doi: 10.1016/j.apsusc.2004.03.159 CrossRefGoogle Scholar
  92. Wilson EB Jr, Decius JD, Cross PC (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra. Dover Publications, New York, 388 pp Google Scholar
  93. Wirth R (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi: 10.1127/0935-1221/2004/0016-0863 CrossRefGoogle Scholar
  94. Yurimoto H, Kurosawa M, Sueno S (1989) Hydrogen analysis in quartz crystals and quartz glasses by secondary ion mass spectrometry. Geochim Cosmochim Acta 53:751–755. doi: 10.1016/0016-7037(89)90018-5 CrossRefGoogle Scholar
  95. Zajacz Z, Halter W, Malfait WJ, Bachmann O, Bodnar RJ, Hirschmann MM, Mandeville CW, Morizet Y, Muntener O, Ulmer P, Webster JD (2005) A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contrib Mineral Petrol 150:631–642. doi: 10.1007/s00410-005-0040-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sylvia-Monique Thomas
    • 1
    • 2
    Email author
  • Monika Koch-Müller
    • 1
  • Patrick Reichart
    • 3
  • Dieter Rhede
    • 1
  • Rainer Thomas
    • 1
  • Richard Wirth
    • 1
  • Stanislav Matsyuk
    • 4
  1. 1.Deutsches GeoForschungsZentrum GFZ, Section 3.3 Chemistry and Physics of Earth MaterialsPotsdamGermany
  2. 2.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  3. 3.Universität der Bundeswehr MünchenNeubibergGermany
  4. 4.Institute of Geochemistry, Mineralogy and Ore FormationNational Academy of Science of UkraineKievUkraine

Personalised recommendations