Physics and Chemistry of Minerals

, Volume 36, Issue 5, pp 241–257 | Cite as

Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure

  • Nicolas Trcera
  • Delphine Cabaret
  • Stéphanie RossanoEmail author
  • François Farges
  • Anne-Marie Flank
  • Pierre Lagarde
Original Paper


X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.


Magnesium X-ray absorption spectroscopy XANES Ab initio calculation Minerals Glasses 



The authors are grateful to Sylvie Poissonnet for the recording of the microprobe analysis perforled at the CEA. We are grateful to Fabrice Brunet from Ecole Normale Supérieure de Paris for providing us the farringtonite sample. The staff of Swiss Light Source (SLS) is thanked for their assitance and technical support during Mg K-edge measurements. The theoretical part of this work was supported by the French computational institut of Orsay (Institut du Développement et des Ressources en Informatique Scientifique) under Projects Nos. 62015 and 72015.


  1. Andrault D, Neuville DR, Flank A-M, Wang Y (1998) Cation sites in Al-rich MgSiO3 perovskites. Am Mineral 83:1045–1053Google Scholar
  2. Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71CrossRefGoogle Scholar
  3. Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  4. Boström D (1987) Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am Mineral 72:965–972Google Scholar
  5. Branda F, Buri A, Caferra D, Marotta A (1983) The effect of mixing of network-modifiers on the transformation temperature of silicate glasses. J Non-Cryst Solids 54:193–198CrossRefGoogle Scholar
  6. Brown GE Jr, Farges F, Calas G (1995) X-ray scattering and X-ray spectroscopy studies of silicate melts. Rev Mineral 32:317–410Google Scholar
  7. Brunet F, Vielzeuf D (1996) The farringtonite/Mg3(PO4)2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus. Eur J Mineral 8:221–468Google Scholar
  8. Cabaret D, Sainctavit P, Ildefonse P, Flank A-M (1998) Full multiple scattering calculations of the X-ray absorption near edge structure at the magnesium K-edge in pyroxene. Am Mineral 83:300–304Google Scholar
  9. Cabaret D, Le Grand M, Ramos A, Flank A-M, Rossano S, Galoisy L, Calas G, Ghaleb D (2001) Medium range structure in borosilicate glasses from Si K-edge XANES: a combined approach based on multiple scattering and molecular dynamics calculations. J Non-Cryst Solids 289:1–8CrossRefGoogle Scholar
  10. Cabaret D, Gaudry E, Taillefumier M, Sainctavit F, Mauri F (2005) XANES calculation with an efficient "non muffin-tin" method: application to the angular dependence of the Al K-edge in corundum. Physica Scripta T115:131–133CrossRefGoogle Scholar
  11. Cabaret D, Mauri F, Henderson GS (2007) Oxygen K-edge XANES of germanates investigated using first-principles calculations. Phys Rev B 75:184205CrossRefGoogle Scholar
  12. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Am Mineral 58:594–618Google Scholar
  13. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefGoogle Scholar
  14. Cormier L, Neuville DR (2004) Ca and Na environments in Na2O-CaO-Al2O3-SiO2 glasses: influence of cation mixing and cation-network interactions. Chem Geol 213:103–113CrossRefGoogle Scholar
  15. Curti E (2003) Glass dissolution parameters: update for "Entsorgungsnachweis". Technical Report NTB pp 02–21Google Scholar
  16. de Groot FMF (2007) Novel techniques and approaches to unravel the nature of X-ray absorption spectra. In: Hedman B, Pianetta P (eds) X-ray absorption fine structure—XAFS13, AIP conference proceedings, vol 882, pp 37–43Google Scholar
  17. de Wispelaere S, Cabaret D, Levelut C, Rossano S, Flank A-M, Parent P, Farges F (2004) Na-, Al-, and Si K-edge XANES study of sodium silicate and sodium aluminosilicate glasses: influence of the glass surface. Chem Geol 213:63–70CrossRefGoogle Scholar
  18. Dingwell DB (1995) Relaxation in silicate melts: some applications. Rev Mineral 32:21–66Google Scholar
  19. Dingwell DB, Paris E, Seifert F, Mottana A, and Romano C (1994) X-ray absorption study of Ti-bearing silicate glasses. Phys Chem Miner 21:501–509CrossRefGoogle Scholar
  20. Farges F (2001) Crystal chemistry of iron in natural grandidierites: an X-ray absorption fine-structure spectroscopy study. Phys Chem Miner 28:619–629CrossRefGoogle Scholar
  21. Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a molecular dynamics, combined XAFS spectroscopy, and bond valence study. J Non-Cryst Solids 344:176–188CrossRefGoogle Scholar
  22. Fiske PS, Stebbins JF (1994) The structural role of Mg in silicate liquids: a high-temperature 25Mg, 23Na and 29Si NMR study. Am Mineral 79:848–861Google Scholar
  23. Flank A-M, Cauchon G, Lagarde P, Bac S, Janousch M, Wetter R, Dubuisson J-M, Idri M, Langlois F, Moreno T, Vantelon D (2006) LUCIA, a microfocus soft XAS beamline. Nucl Instr Meth B 246:269–274CrossRefGoogle Scholar
  24. Galoisy L, Calas G (1993) Structural environment of nickel in silicate glass/melt systems: Part 1. spectroscopic determination of coordination states. Geochim Cosmochim Acta 57:3613–3626CrossRefGoogle Scholar
  25. George AM, Stebbins JF (1998) Structure and dynamics of magnesium in silicate melts: a high-temperature 25Mg NMR study. Am Mineral 83:1022–1029Google Scholar
  26. Guignard M, Cormier L (2008) Environments of Mg and Al in MgO-Al2O3-SiO2 glasses: a study coupling neutron and X-ray diffraction and reverse monte carlo modeling. Chem Geol (in press)Google Scholar
  27. Guili G, Pratesi G, Corazza M, Cipriani C (2000) Aluminium coordinantion in tektites: a XANES study. Am Mineral 85:1172–1174Google Scholar
  28. Guillot B, Sator N (2007) A computer simulation study of natural silicate melts. Part I : low pressure properties. Geochim Cosmochim Acta 71:1249–1265CrossRefGoogle Scholar
  29. Hawthorne RM, Ito J (1977) Synthesis and crystal-structure refinement of transition-metal orthopyroxenes I: orthoenstatite and (Mg, Mn, Co) orthopyroxene. Can Mineral 15:321–338Google Scholar
  30. Hazen RM, Finger LW (1989) High-pressure crystal chemistry of andradite and pyrope: revised procedures for high-pressure diffraction experiments. Am Mineral 74:352–359Google Scholar
  31. Henderson GS (1995) A Si K-edge EXAFS/XANES study of sodium silicate glasses. J Non-Cryst Solids 183:43–50CrossRefGoogle Scholar
  32. Hochella MF Jr, Brown GE Jr, Ross FK, Gibbs GV (1979) High-temperature crystal chemistry of hydrous Mg- and Fe-cordierite. Min Mag 64:337–351Google Scholar
  33. Ildefonse P, Calas G, Flank A-M, Lagarde P (1995) Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems. Nucl Instr Meth B 97:172–175CrossRefGoogle Scholar
  34. Ildefonse P, Cabaret D, Sainctavit P, Calas G, Flank A-M, Lagarde P (1998) Local aluminium environment in Earth’s surface minerals. Phys Chem Miner 25:112–121CrossRefGoogle Scholar
  35. Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EI, Brown GE Jr (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochimica and Cosmochimica Acta 69:4315–4332CrossRefGoogle Scholar
  36. Jallot E (2003) Role of magnesium during spontaneous formation of a calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO. Appl Surf Sci 211:89–95CrossRefGoogle Scholar
  37. Kas JJ, Sorini P, Prange MP, Cambell LW, Soininen JA, Rehr JJ (2007) Many-pole model of inelastic losses in X-ray absorption spectra. Phys Rev B 76:195116–195126CrossRefGoogle Scholar
  38. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48(20):1425–1428 doi: 10.1103/PhysRevLett.48.1425 CrossRefGoogle Scholar
  39. Koenderink GH, Brzesowsky RH, Balkenende AR (2000) Effect of the initial stages of the leaching on the surface of the alkaline earth sodium silicate glasses. J Non-Cryst Solids 262:80–98CrossRefGoogle Scholar
  40. Kroeker S, Stebbins JF (2000) Magnesium coordination environments in glasses and minerals: new insight from high-field magnesium-25 MAS NMR. Am Mineral 85:1459–1464Google Scholar
  41. Kubicki JD, Lasaga AC (1991) Molecular dynamics simulation of pressure and temperature effects on MgSiO, and Mg2 SiO3 melts and glasses. Phys Chem Miner 17:661–673CrossRefGoogle Scholar
  42. Lefrère Y (2002) Proprités d’absorption optique du Fe2+ et du Fe3+ dans des verres d’intérêt industriel: mesure, modélisation et implications structurales. PhD thesis, Université Denis DiderotGoogle Scholar
  43. Levelut C, Cabaret D, Benoit M, Jund P, Flank A-M (2001) Multiple scattering calculations of the XANES Si K-edge in amorphous silica. J Non-Cryst Solids 293-295:100–104CrossRefGoogle Scholar
  44. Li D, Bancroft GM, Fleet ME, Feng XH (1995) Silicon K-edge XANES spectra of silicate minerals. Phys Chem Miner 22:115–122Google Scholar
  45. Li D, Peng M, Murata T (1999) Coordination and local structure of magnesium in silicate minerals and glasses: Mg K-edge XANES study. Can Mineral 37:199–206Google Scholar
  46. Mizoguchia T, Tatsumi K, Tanaka I (2006) Peak assignments of ELNES and XANES using overlap population diagrams. Ultramicroscopy 106:1120–1128CrossRefGoogle Scholar
  47. Mo S-D, Ching W-Y (2000) Ab initio calculation of the core-hole effect in the electron energy-loss near-edge structure. Phys Rev B 62:7901–7907CrossRefGoogle Scholar
  48. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  49. Mysen B, Richet P (2005) Silicate glasses and melts: properties and structure, vol 10, 2 edn. ElsevierGoogle Scholar
  50. Natoli CR (1984) Distance dependence of continuum and bound state of excitonic resonances in X-ray absorption near-edge structures (XANES). In: Hodgson KO, Herman B, PennerHahn JE (eds) EXAFS and Near Edge Structure III. Springer Proceedings on Physics, vol 2, pp 38–42Google Scholar
  51. Neuville DR, Cormier L, Flank A-M, Briois V, Massiot D (2004) Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. Chem Geol 213:153–163CrossRefGoogle Scholar
  52. Nord AG, Kierkegaard P (1968) The crystal structure of Mg3(PO4)2. Acta Chem Scand 22:1466–1474Google Scholar
  53. O’Neill HS, Eggins SM (2002) The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol 186:151–181CrossRefGoogle Scholar
  54. Perdikatsis B, Burzlaff H (1981) Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]. Zeitschrift fur Kristallographie 156:177–186Google Scholar
  55. Pouchou J-L, Pichoir F (1984) Extension of quantitative possibilities of microanalysis by a new formulation of matrix effects. Journal de Physique (Paris), Colloque 45(2):17–20Google Scholar
  56. Quartieri S, Boscherini F, Dalconi C, Iezzi G, Meneghini C, Oberti R (2008) Magnesium K-edge EXAFS study of bond-length behavior in synthetic pyrope-grossular garnet solid solutions. Am Mineral 93:495–498CrossRefGoogle Scholar
  57. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  58. Rossano S, Behrens H, Wilke M (2008) Advanced analyses of 57Fe Mössbauer data of alumino-silicate glasses. Phys Chem Miner 35:77–93CrossRefGoogle Scholar
  59. Sánchez del Río M, Suárez M, García Romero, Alianelli L, Felici R, Martinetto EP, Dooryhée E, Reyes-Valerio C, Borgatti F, Doyle B, Giglia A, Mahne N, Pedio M, Nannarone S (2005) Mg K-edge XANES of sepiolite and palygorskite. Nucl Instr Meth Phys Res B 238:55–60CrossRefGoogle Scholar
  60. Sharp T, Wu Z, Seifert F, Poe B, Doerr M, Paris E (1996) Distinction between six- and fourfold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy. Phys Chem Miner 23:17–24CrossRefGoogle Scholar
  61. Sharp ZD, Hazen RM, Finger LW (1987) High-pressure crystal chemistry of monticellite, CaMgSiO4. Am Mineral 72:748–755Google Scholar
  62. Shimoda K, Tobu Y, Hatakeyama M, Nemoto T, Saito K (2007) Structural investigation of Mg local environments in silicate glasses by ultra-high field 25Mg 3QMAS NMR spectroscopy. Am Mineral 92:695–698CrossRefGoogle Scholar
  63. Shiono T, Minagi T, Aritani H, Okumura S, Nishida T (2002) Mg K-edge XANES study of crystallization of MgAl2O4 spinel prepared from a mixture of Al(OH)3 and Mg(OH)2 activated mechanically by wet milling. UVSOR Act Rep 2001:192–193Google Scholar
  64. Stephenson DA, Moore PB (1968) The crystal structure of grandidierite, (Mg,Fe)Al3SiO9. Acta Cryst B 24:1518–1522CrossRefGoogle Scholar
  65. Taillefumier M, Cabaret D, Flank A-M, Mauri F (2002) X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K edge in diamond and alpha-quartz. Phys Rev B 66:195107(1–8)Google Scholar
  66. Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A, Scofield J, Underwood J, Vaughan D, Williams G, Winick H (2001) X-ray data booklet. LNBL, Berkeley, USA, 2001. Center for X-ray Optics and Advanced Light SourceGoogle Scholar
  67. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  68. Trcera N, Cabaret D, Farges F, Flank A-M, Lagarde P, Rossano S (2007) Mg K-edge XANES spectra in crystals and oxide glasses: experimental vs. theoretical approaches. In: Hedman B, Pianetta P (eds) X-ray absorption fine structure—XAFS13, AIP Conference Proceedings, vol 882, pp 226–228Google Scholar
  69. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. Phys Rev B 43(11):8861–8869CrossRefGoogle Scholar
  70. Wilding MC, Benmore CJ, Tangeman JA, Sampath S (2004) Coordination changes in magnesium silicate glasses. Europhys Lett 67(2):212–218CrossRefGoogle Scholar
  71. Winterer M (1997) XAFS—a data analysis program for materials science. J Phys IV 7 C2:243–244CrossRefGoogle Scholar
  72. Wu ZY, Mottana A, Paris E, Giuli G, Cibin G (2004) X-ray absorption near-edge structure at the Mg K-egde in olivine minerals. Phys Rev B 69:104106Google Scholar
  73. Yamanaka T, Takeuchi Y (1983) Order-disorder transition in MgAl2O3 spinel at high temperatures up to 1700°C. Zeitschrift für Kristallographie 165:65–78Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nicolas Trcera
    • 1
  • Delphine Cabaret
    • 2
  • Stéphanie Rossano
    • 1
    Email author
  • François Farges
    • 3
  • Anne-Marie Flank
    • 4
  • Pierre Lagarde
    • 4
  1. 1.Laboratoire Géomatériaux et Géologie de l’Ingénieur (G2I)Université Paris-EstMarne la Vallée Cedex 2France
  2. 2.IMPMC, UMR7590, Universités Paris 6 et 7, CNRS, IPGPParisFrance
  3. 3.Laboratoire de Minéralogie (USM 201)Muséum National d’Histoire Naturelle, CNRS UMR 7160ParisFrance
  4. 4.CNRS UR1 SoleilGif sur YvetteFrance

Personalised recommendations