Physics and Chemistry of Minerals

, Volume 36, Issue 3, pp 171–181 | Cite as

X-ray Raman scattering for structural investigation of silica/silicate minerals

  • H. Fukui
  • M. Kanzaki
  • N. Hiraoka
  • Y. Q. Cai
Original Paper


We have performed X-ray Raman scattering (XRS) measurements on the oxygen K and silicon L absorption edges of four silica minerals: α-quartz, α-cristobalite, coesite, and stishovite. We have also calculated the partial electron densities of states (DOSs) and compared these with the XRS spectra. This study demonstrates that the short-range structure around the atom of interest strongly influences the XRS spectral features. Importantly, the oxygen K-edge XRS spectra are found to reflect the p-orbital DOS while the silicon L-edge spectra reflect the s- and d-orbital DOSs, even when a product of a momentum transfer and a mean radius of a electron orbit (1s for oxygen and 2p for silicon), Qr, is close to or larger than unity. Building on this, calculations of the partial DOSs for other silica phases are presented, including ultra-high-pressure phases, which provide a good reference for further XRS study of silica and silicate minerals. XRS measurements should be performed on not only either of oxygen or silicon but also on many kinds of constituent elements to reveal the structural change of glasses/melts of silicates under extreme conditions.


X-ray Raman scattering SiO2 polymorphs Short-range structure Intermediate structure Electronic structure 



Hirofumi Ishii and Ignace Jarrige are appreciated for their help on the experiments. We thank Isao Tanaka and Tomoyuki Yamamoto for their advice on calculation of spectra. Alfred Q.R. Baron and Osamu Ohtaka kindly read this manuscript. A series of experiments were performed under proposals to National Synchrotron Radiation Research Center. This work was supported by Grants-in-Aid for Young Scientists of Japan Society for the Promotion of Science and by the 21st Century COE Program of Institute of Study for the Earth’s Interior of Okayama University.


  1. Andrault D, Fiquet G, Guyot F, Hanfland M (1998) Pressure-induced Landau-type transition in stishovite. Science 23:720–724. doi: 10.1126/science.282.5389.720 CrossRefGoogle Scholar
  2. Angel RJ, Shaw CSJ, Gibbs GV (2003) Compression mechanisms of coesite. Phys Chem Miner 30:167–176. doi: 10.1007/s00269-003-0303-9 CrossRefGoogle Scholar
  3. Badro J, Teter DM, Downs RT, Gillet P, Hemley RJ, Barrat JL (1997) Theoretical study of a five-coordinated silica polymorph. Phys Rev B 56:5797. doi: 10.1103/PhysRevB.56.5797 CrossRefGoogle Scholar
  4. Bergmann U, Wernet P, Glatzel P et al (2002) X-ray Raman spectroscopy at the oxygen K edge of water and ice: implications on local structure models. Phys Rev B 66:092107. doi: 10.1103/PhysRevB.66.092107 CrossRefGoogle Scholar
  5. Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (1999) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, ISBN 3-9501031-1-2Google Scholar
  6. Bowron DT, Krisch MH, Barnes AC et al (2000) X-ray-Raman scattering from the oxygen K edge in liquid and solid H2O. Phys Rev B 62:R9223–R9227. doi: 10.1103/PhysRevB.62.R9223 CrossRefGoogle Scholar
  7. Cai YQ, Mao HK, Chow PC et al (2005) Ordering of hydrogen bonds in high-pressure low-temperature H2O. Phys Rev Lett 94:025502. doi: 10.1103/PhysRevLett.94.025502 CrossRefGoogle Scholar
  8. Davoli I, Paris E, Stizza S et al (1992) Structure of densified vitreous silica: silicon and oxygen XANES spectra and multiple scattering calculations. Phys Chem Miner 19:171–175. doi: 10.1007/BF00202105 CrossRefGoogle Scholar
  9. Fukui H, Huotari S, Andrault D, Kawamoto T (2007) Oxygen K-edge fine structures of water by X-ray Raman scattering spectroscopy under pressure conditions. J Chem Phys 127:134502. doi: 10.1063/1.2774988 CrossRefGoogle Scholar
  10. Fukui H, Kanzali M, Hiraoka N, Cai YQ (2008) Coordination environment of silicon in silica glass up to 74 GPa: An X-ray Raman scattering study at the silicon L edge. Phys Rev B 78:012203. doi: 10.1103/PhysRevB.78.012203 CrossRefGoogle Scholar
  11. Hiraoka N, Buslaps T, Honkimäki V, Suortti P (2005) Performance of a dispersion-compensating scanning X-ray spectrometer for Compton profile measurements. J Synchrotron Radiat 12:670–674. doi: 10.1107/S0909049505022569 CrossRefGoogle Scholar
  12. Huang L, Durandurdu M, Kieffer J (2006) Transformation pathways of silica under high pressure. Nat Mater 5:977–981. doi: 10.1038/nmat1760 CrossRefGoogle Scholar
  13. Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77Google Scholar
  14. Kuwayama Y, Hirose K, Sata N, Ohishi Y (2005) The pyrite-type high-pressure form of silica. Science 309:923–925. doi: 10.1126/science.1114879 CrossRefGoogle Scholar
  15. Lee SG, Lin JF, Cai YQ et al (2008) X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA 105:7925–7929. doi: 10.1073/pnas.0802667105 CrossRefGoogle Scholar
  16. Li D, Bancroft GM, Fleet ME, Feng XH (1994) Silicon K-edge XANES spectra of silicate minerals. Am Mineral 79:622–632Google Scholar
  17. Lin JF, Fukui H, Prendergast D et al (2007) Electronic bonding transition in compressed SiO2 glass. Phys Rev B 75:012201. doi: 10.1103/PhysRevB.75.012201 CrossRefGoogle Scholar
  18. Mizuno Y, Ohmura Y (1967) Theory of X-ray Raman scattering. J Phys Soc Jpn 22:445–449. doi: 10.1143/JPSJ.22.445 CrossRefGoogle Scholar
  19. Nagasawa H, Mourikis S, Schulke W (1989) X-ray Raman spectrum of Li, Be and graphite in a high-resolution inelastic synchrotron X-ray scattering experiment. J Phys Soc Jpn 58:710–717. doi: 10.1143/JPSJ.58.710 CrossRefGoogle Scholar
  20. Schmahl WW, Swainson IP, Dove MT, Graeme-Barber A (1992) Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite. Z Kristallogr 201:125–145Google Scholar
  21. Sharp T, Wu Z, Seifert F et al (1996) Distinction between six- and fourfold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy. Phys Chem Miner 23:17–24. doi: 10.1007/BF00202989 CrossRefGoogle Scholar
  22. Slater JC (1960) Quantum theory of atomic structure, vol 1. McGraw Hill, New York, p 210Google Scholar
  23. Sternemann C, Soininen JA, Huotari S et al (2005) X-ray Raman scattering at the L edges of elemental Na, Si, and the N edge of Ba in Ba8Si46. Phys Rev B 72:035104. doi: 10.1103/PhysRevB.72.035104 CrossRefGoogle Scholar
  24. Suzuki T (1967) X-Ray Raman scattering. Experiment. I. J Phys Soc Jpn 22:1139–1150. doi: 10.1143/JPSJ.22.1139 CrossRefGoogle Scholar
  25. Suzuki T, Kishimoto T, Kaji T, Suzuki T (1970) X-ray Raman scattering. II. Experiment with Cr Kα radiation. J Phys Soc Jpn 29:730–736. doi: 10.1143/JPSJ.29.730 CrossRefGoogle Scholar
  26. Tanaka I, Kawai J, Adachi H (1995) Near-edge X-ray-absorption fine structure of crystalline silicon dioxides. Phys Rev B 52:11733–11739. doi: 10.1103/PhysRevB.52.11733 CrossRefGoogle Scholar
  27. Tohji K, Udagawa Y (1987) Novel approach for structure analysis by X-ray Raman scattering. Phys Rev B 36:9410–9412. doi: 10.1103/PhysRevB.36.9410 CrossRefGoogle Scholar
  28. Tohji K, Udagawa Y (1989) X-ray Raman scattering as a substitute for soft-X-ray extended X-ray-absorption fine structure. Phys Rev B 39:7590–7594. doi: 10.1103/PhysRevB.39.7590 CrossRefGoogle Scholar
  29. Watanabe N, Hayashi H, Udagawa Y et al (1996) Anisotropy of hexagonal boron nitride core absorption spectra by X-ray Raman spectroscopy. Appl Phys Lett 69:1370–1372. doi: 10.1063/1.117439 CrossRefGoogle Scholar
  30. Wernet P, Nordlund D, Bergmann U et al (2004) The structure of the first coordination shell in liquid water. Science 304:995–999. doi: 10.1126/science.1096205 CrossRefGoogle Scholar
  31. Will G, Bellotto M, Parrish W, Hart M (1988) Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J Appl Cryst 21:182–191. doi: 10.1107/S0021889887011567 CrossRefGoogle Scholar
  32. Wu Z, Seifert F, Poe B, Sharp T (1996) Mulitiple-scattering calculations for SiO2 polymorphs: a comparison to ELNES and XANES spectra. J Phys Condens Matter 8:3323–3336. doi: 10.1088/0953-8984/8/19/008 CrossRefGoogle Scholar
  33. Yamanaka T, Fukuda T, Mimaki J (2002) Bonding character of SiO2 stishovite under high pressures up to 30 GPa. Phys Chem Miner 29:633–641. doi: 10.1007/s00269-002-0257-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • H. Fukui
    • 1
    • 3
  • M. Kanzaki
    • 1
  • N. Hiraoka
    • 2
  • Y. Q. Cai
    • 2
    • 4
  1. 1.Institute of Study for the Earth’s InteriorOkayama UniversityMisasaJapan
  2. 2.National Synchrotron Radiation Research CenterHsinchuTaiwan
  3. 3.Materials Dynamics LaboratorySPring-8/Harima Institute, RIKENSayoJapan
  4. 4.National Synchrotron Light Source IIBrookhaven National LaboratoryUptonUSA

Personalised recommendations