Physics and Chemistry of Minerals

, Volume 36, Issue 2, pp 107–118 | Cite as

Thermal diffusivity of natural and synthetic garnet solid solution series

  • Hauke Marquardt
  • Steffen Ganschow
  • Frank R. Schilling
Original Paper


Knowledge of heat transport properties as a function of mineral- and rock-composition and temperature is of major relevance to understand and model heat transfer in the Earth’s interior. A systematic study on 13 natural and 4 synthetic garnets was carried out in an attempt to obtain a better systematic understanding of the processes that affect the heat transport in minerals, especially the effect of chemical substitution in solid solution series. It is found that substitution significantly lowers the thermal diffusivity from end-member values for both synthetic and natural garnets with a minimum of thermal diffusivity at an intermediate composition. The thermal diffusivity as a function of the degree of substitution can be described by the approach of Padture and Klemens (J Am Ceram Soc 80 (4):1018–1020, 1997). With increasing temperature the thermal diffusivity decreases due to phonon-phonon-scattering effects. A quantitative analysis of the high-temperature behaviour was carried out by using the model of Roufosse and Klemens (J Geophys Res 79 (5):703–705, 1974), which takes a lower limit of thermal diffusivity at elevated temperatures into account. The model allows for an extrapolation of the deduced room temperature thermal diffusivities to higher temperatures. Furthermore, the model was modified to determine the high temperature limit of the thermal diffusivity for all investigated natural garnets D min to be 0.64 ± 0.03 mm2/s.


Thermal diffusivity Thermal transport properties Garnets YAG YbAG Solid solution series Substitution 



Many thanks to the institute for crystal growth in Berlin (IKZ) for producing and providing the synthetic garnets. We would also like to thank Netzsch GmbH for test measurements with the LFA 427. We would like to thank A. M. Hofmeister and two anonymous reviewers for their critical comments and helpful suggestions that helped to improve this manuscript. Many thanks to the entire Sect. 4.1 at the GeoForschungsZentrum Potsdam for support, especially Kristin Gratz for discussions and technical assistance, Andreas Ebert for continuous support, Matthias Gottschalk, Sandro Jahn, Sergio Speziale, Hans Josef Reichmann, and Katharina Hartmann for stimulating discussions, Gerhard Berger for microprobe sample preparation, Dieter Rhede for microprobe analysis and Andreas Hahn for X-ray diffraction measurements.


  1. Anderson DL (1989). Theory of the Earth. Blackwell, OxfordGoogle Scholar
  2. Anderson OL (1999) Mantle convection: a thermal balancing act. Science 283(5408):1652–1653CrossRefGoogle Scholar
  3. Blumm J, Lemarchand S (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp High Press 34:523–528CrossRefGoogle Scholar
  4. Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and applications of spinel equilibria in the system FeO-Al2O3-SiO2 (thermobarometer). J Petrol 27(5):1143–1156Google Scholar
  5. Branlund JM, Hofmeister AM (2007) Thermal diffusivity of quartz to 1, 000°C: effects of impurities and the α-β phase transition. Phys Chem Miner 34:581–595. doi: 10.1007/s00269-007-0173-7 CrossRefGoogle Scholar
  6. Bräuer H, Dusza L, Schulz B (1992) New laser flash equipment LFA 427. Interceram 41:489–492Google Scholar
  7. Bruls RJ, Hintzen HT, Metselaar R (2005) A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds: A case study for MgSiN2, AlN and b-Si3N4 ceramics. J Eur Ceram Soc 25:767–779CrossRefGoogle Scholar
  8. Chai M, Brown JM, Slutsky LJ (1996) Thermal diffusivity of mantle minerals. Phys Chem Miner 23(7):470–475CrossRefGoogle Scholar
  9. Debye P (1914) Vorträge über die kinetische Theorie der Materie und der Elektrizität. B. G. Teubner, BerlinGoogle Scholar
  10. Eucken A (1911) Uber die Temperaturabhängigkeit der Wärmeleitfähigkeit fester Nichtmetalle. Ann Phys Leipzig IV(34):185–221Google Scholar
  11. Gaumé R, Viana B, Vivien D, Roger J-P, Fournier D (2003) A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Appl Phys Lett 83(7):1355–1357CrossRefGoogle Scholar
  12. Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet; structural dynamic and thermodynamic properties. Am Miner 82(7–8):740–747Google Scholar
  13. Gibert B, Seipold U, Tommasi A, Mainprice D (2003) Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric. J Geophys Res 108(B8):2359. doi: 10.1029/2002JB002108 CrossRefGoogle Scholar
  14. Gibert B, Schilling FR, Gratz K, Tommasi A (2005) Thermal diffusivity of olivine single crystals and a dunite at high temperature: Evidence for heat transfer by radiation in the upper mantle. Phys Earth Planet Inter 151(1–2):129–141Google Scholar
  15. Giesting PA, Hofmeister AM (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B 65:144305CrossRefGoogle Scholar
  16. Giesting PA, Hofmeister AM, Wopenka B, Gwanmesia GD, Jolliff BL (2004) Thermal conductivity and thermodynamics of majoritic garnets; implications for the transition zone. Earth Planet Sci Lett 218(1–2):45–56CrossRefGoogle Scholar
  17. Grigull U, Sandner H (1979) Wärmeleitung. Springer, BerlinGoogle Scholar
  18. Höfer M, Schilling FR (2002) Heat transfer in quartz, orthoclase, and sanidine at elevated temperatures. Phys Chem Miner 29:571–584CrossRefGoogle Scholar
  19. Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283(5408):1699–1706CrossRefGoogle Scholar
  20. Hofmeister AM (2005) Dependence of diffusive radiative transfer on grainsize, temperature, and fe-content: Implications for mantle processes. J Geodyn 40:51–72CrossRefGoogle Scholar
  21. Hofmeister AM (2006) Thermal diffusivity of garnets at high temperature. Phys Chem Miner 33(1):45–62CrossRefGoogle Scholar
  22. Hofmeister AM (2007) Pressure dependence of thermal transport properties. Proc Natl Acad Sci 104(22):9192–9197CrossRefGoogle Scholar
  23. Hofmeister AM, Chopelas A (1991) Vibrational spectroscopy of end-member silicate garnets. Phys Chem Miner 17(6):503–526CrossRefGoogle Scholar
  24. Hofmeister AM, Pertermann M, Branlund JM, Whittington AG (2006) Geophysical implications of reduction in thermal conductivity due to hydration. Geophys Res Lett 33(11):L11310. doi: 10.1029/2006GL026036 CrossRefGoogle Scholar
  25. Hofmeister AM, Pertermann M, Branlund JM (2007). Thermal conductivity of the Earth. In: Schubert G (ed) Treatise in Geophysics, vol 2 Mineral physics (Price GD, ed) Elsevier, The Netherlands, pp 543–578Google Scholar
  26. Horai KI, Simmons G (1969) Thermal conductivity of rock-forming minerals. Earth Planet Sci Lett 6(5):359–368CrossRefGoogle Scholar
  27. Kanamori H, Fujii N, Mizutani H (1968) Thermal diffusivity measurement of rock-forming minerals from 300 to 1, 100°K. J Geoph Res 73(2):595–605CrossRefGoogle Scholar
  28. Klimm D, Ganschow S, Pajaczkowska A, Lipinska L (2007) On the solubility of Nd3+ in Y3Al5O12. J Alloys Comp 436:204–208CrossRefGoogle Scholar
  29. Krupke W, Shinn M, Marion J, Caird J, Stokowski S (1986) Spectroscopic, optical, and thermomechanical properties of neodymiumand chromium-doped gadolinium scandium gallium garnet. J Opt Soc Am B 3(1):102–114CrossRefGoogle Scholar
  30. Kuwano Y, Suda K, Ishizawa N, Yamada T (2004) Crystal growth and properties of (Lu, Y)3Al5O12. J Cryst Growth 260(1–2):159–165CrossRefGoogle Scholar
  31. Lee HL, Hasselmann DPH (1985) Comparison of data for thermal diffusivity obtained by laser-flash method using thermocouple and photodetector. J Am Ceram Soc 68(1):C12–C13CrossRefGoogle Scholar
  32. Marquardt H, Schilling FR, Gratz K (2005) Thermal diffusivity of garnets as a function of temperature. Ber Dtsch Mineral Ges, Beih Eur J Miner 17(1):87Google Scholar
  33. Nye JF (1985) Physical properties of crystals. Clarendon Press, OxfordGoogle Scholar
  34. Osako M, Eiji I (1997). Simultaneous thermal diffusivity and thermal conductivity measurements of mantle materials up to 10 GPa. Tech Rep ISEI A(67):1–6Google Scholar
  35. Osako M, Ito E, Yoneda A (2004) Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Inter 143(1–2):311–320CrossRefGoogle Scholar
  36. Padture NP, Klemens PG (1997) Low thermal conductivity in garnets. J Am Ceram Soc 80(4):1018–1020CrossRefGoogle Scholar
  37. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684CrossRefGoogle Scholar
  38. Patel FD, Honea EC, Speth J, Payne SA, Hutcheson R, Equall R (2001) Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb: YAG. IEEE J Quantum Electronic 37(1):135–144CrossRefGoogle Scholar
  39. Peierls R (1929) Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann Phys 395 (5(3)):1055–1101Google Scholar
  40. Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine group minerals at high temperatures. Am Miner 91:1747–1760CrossRefGoogle Scholar
  41. Ray L, Förster H-J, Schilling FR, Förster A (2006). Thermal diffusivity of felsic to mafic granulites at elevated temperatures. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2006.09.010
  42. Robie, RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv BullGoogle Scholar
  43. Robie RA, Bin Z, Hemingway BS, Barton MD (1987) Heat capacity and thermodynamic properties of andradite garnet, Ca2Fe3Si3O12 between 10 to 1000 K and revised values for Δf Gm (298.15 K) of hedenbergite and wollastonite. Geochim Cosmochim Acta 51:2219–2224CrossRefGoogle Scholar
  44. Roufosse MC, Klemens PG (1973) Thermal conductivity of complex dielectric crystals. Phys Rev B 7(12):5379–5386CrossRefGoogle Scholar
  45. Roufosse MC, Klemens PG (1974) Lattice thermal conductivity of minerals at high temperatures. J Geophys Res 79(5):703–705CrossRefGoogle Scholar
  46. Sato Y, Taira T (2006) The studies of thermal conductivity in GdVO4, YVO4 and Y3Al5O12 measured by quasi-one-dimensional flash method. Opt express 14(22):10528–10536CrossRefGoogle Scholar
  47. Schilling FR (1999) A transient technique to measure thermal diffusivity at elevated temperatures. Eur J Miner 11(6):1115–1124Google Scholar
  48. Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks; a general law. In Heat flow and the structure of the lithosphere; IV, vol 291; 1–4. Elsevier, Amsterdam, pp 161–171Google Scholar
  49. Shankland TJ, Nitsan U (1979) Optical absorption and radiative heat transfer in olivine at high temperature. J Geophys Res 84(B4):1603–1610CrossRefGoogle Scholar
  50. Slack GA, Oliver DW (1971) Thermal conductivity of garnets and phonon scattering by rare-earth ions. Phys Rev B 4(2):592–609CrossRefGoogle Scholar
  51. Sowe M, Schilling FR (2004) Diploma thesisGoogle Scholar
  52. Sumino Y, Anderson OL (1982) Elastic constants of minerals. In: Carmichael RS (ed) Handbook of physical properties of rocks, vol 3. CRC Press, Boca Raton, pp 39–138Google Scholar
  53. Wang Z, Ji S (2001) Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa. Am Miner 86(10):1209–1218Google Scholar
  54. Weidenfeller B, Höfer M, Schilling FR (2004) Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A 35:423–429CrossRefGoogle Scholar
  55. Wu P, Pelton AD (1992) Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J Alloys Comp 179:259–287CrossRefGoogle Scholar
  56. Yanagawa TKB, Nakada M, Yuen DA (2005) Influence of lattice thermal conductivity on thermal convection with strongly temperature dependent viscosity. Earth Planets Space 57(1):15–28Google Scholar
  57. Yang P, Deng P, Yin Z (2002) Concentration quenching in Yb:YAG. J Lumin 97:51–54CrossRefGoogle Scholar
  58. Zharikov EV, Kitaeva VF, Osiko VV, Rustamov IR, Sobolev NN (1984) Elastic, photoelastic, and thermo-physical properties of gadolinium-scandium-gallium-garnet. Sov Phys Solid State 26:922–923Google Scholar
  59. Zoth G, Haenel R (1988). Thermal conductivity. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer, Dordrecht, pp 449–466Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hauke Marquardt
    • 1
  • Steffen Ganschow
    • 2
  • Frank R. Schilling
    • 1
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Institute for Crystal GrowthBerlinGermany

Personalised recommendations