Physics and Chemistry of Minerals

, Volume 36, Issue 1, pp 47–59 | Cite as

Ab initio quantum mechanical study of γ-AlOOH boehmite: structure and vibrational spectrum

  • Yves Noel
  • Raffaella Demichelis
  • Fabien Pascale
  • Piero Ugliengo
  • Roberto Orlando
  • Roberto Dovesi
Original Paper


The structure and vibrational spectrum of boehmite have been investigated at the quantum-mechanical level with the CRYSTAL code, using a Gaussian-type basis set and the B3LYP Hamiltonian. Three space groups are considered in this study: Cmcm, Cmc21, P21/c. Cmcm turns out to correspond to a transition state, whereas Cmc21 and P21/c are minimum energy structures. The difference among them is the position of H atoms only, the Al-O frame being essentially the same. Harmonic frequencies at the Γ point have been computed. The comparison between calculated and experimental frequencies shows a good agreement for the Al-O part of the spectrum (under 790 cm−1). For the Al-OH bending modes (800–1,300 cm−1) an absolute differences of 50–100 cm−1 is observed; for the OH stretching modes (3,200–3,500 cm−1) it increases to 120–200 cm−1: anharmonicity is large because OH groups are involved in strong hydrogen bonds.


Boehmite Structure Vibrational spectrum Quantum-mechanical simulation 


  1. Balan E, Lazzeri M, Morin G, Mauri F (2006) First-principles study of the OH-stretching modes of gibbsite. Am Mineral 91:115–119CrossRefGoogle Scholar
  2. Bokhimi X, Sanchez-Valente J, Pedraza F (2002) Crystallization of sol-gel boehmite via hydrothermal annealing. J Solid State Chem 166:182–190CrossRefGoogle Scholar
  3. Christensen AN, Lehmann MS, Convert P (1982) Dueteration of crystalline hydroxides. hydrogen bonds of γ-AlOO(H,D) and γ-FeOO(H,D). Acta Chem Scand 36:303–308CrossRefGoogle Scholar
  4. Chroneos A, Desai K, Redfern SE, Zacate MO, Grimes RW (2006) New atomic scale simulation models for hydroxides and oxyhydroxides. J Mater Sci 41:675–687CrossRefGoogle Scholar
  5. Chroneos A, Ashley N, Desai K, Maguire JF, Grimes RW (2007) Optimized hydrogen positions for aluminium and iron containing hydroxide minerals. J Mater Sci 42:2024–2029CrossRefGoogle Scholar
  6. Civalleri B, D’Arco P, Orlando R, Saunders VR, Dovesi R (2001) Hartree-Fock geometry optimization of periodic system with the CRYSTAL code. Chem Phys Lett 348:131–138CrossRefGoogle Scholar
  7. Clarck GR, Rodgers KA, Handerson GS (1998) The crystal chemistry of doyleite, Al(OH)3. Z Kristallogr 213:96–100Google Scholar
  8. Corbato CE, Tettenhorst RT, Christoph GG (1985) Structure refinement of deuterated boehmite. Clay Clay Miner 33:71–75CrossRefGoogle Scholar
  9. Demichelis R, Noel Y, Civalleri B, Roetti C, Ferrero M, Dovesi R (2007) The vibrational spectrum of α-AlOOH diaspore: an ab initio study with the CRYSTAL code. J Phys Chem B 111:9337–9346CrossRefGoogle Scholar
  10. Demichelis R, Noel Y, Zicovich-Wilson CM, Roetti C, Valenzano L, Dovesi R (2008) Ab-initio quantum mechanical study of akdalaite (5Al2O3·H2O): structure and vibrational spectrum. J Phys Conf Ser 117:012013CrossRefGoogle Scholar
  11. Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2002a) Hydroxyl groups on γ-alumina surfaces: a DFT study. J Catal 211:1–5Google Scholar
  12. Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E (2002b) Structure and stability of aluminium hydroxides: a theoretical study. J Phys Chem B 106:5155–5162CrossRefGoogle Scholar
  13. Doll K (2001) Implementation of analytical Hartree-Fock gradients for periodic systems. Comput Phys Commun 137:74–88CrossRefGoogle Scholar
  14. Doll K, Harrison NM, Saunders VR (2001) Analytical Hartree-Fock gradients for periodic systems. Int J Quantum Chem 82:1–13CrossRefGoogle Scholar
  15. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco P, Llunell M (2006) Crystal 2006 user’s manual. University of Torino, TorinoGoogle Scholar
  16. Farmer VC (1980) Raman and ir spectra of bohemite (γ-AlOOH) are consistent with D 16 2h or C 5 2h symmetry. Spectrochim Acta 36A:585–586CrossRefGoogle Scholar
  17. Fermann JT, Auerbach S (2000) Modeling proton mobility in acidic zeolite clusters: II. Room temperature tunneling effects from semiclassical rate theory. J Chem Phys 112:6787–6794CrossRefGoogle Scholar
  18. Fripiat JJ, Bosmans H, Rouxhet PG (1967) Hydrogenic vibration modes and proton delocalization in boehmite. J Phys Chem 71(4):1097–1111CrossRefGoogle Scholar
  19. Frost RL, Kloprogge JT, Russell SC, Szetu J (1999) Dehydroxylation of aluminum (oxo)hydroxides using infrared emission spectroscopy. Part II: boehmite. Appl Spectrosc 53(5):572–582CrossRefGoogle Scholar
  20. Gale JD, Rohl AL, Milman V, Warren MC (2001) An ab initio study of the structures and properties of aluminium hydroxides: gibbsite and bayerite. J Phys Chem B 105:10236–10242CrossRefGoogle Scholar
  21. Hill RJ (1981) Hydrogen atoms in boehmite: a single crystal X-ray diffraction and molecular orbital study. Clay Clay Miner 29:435–445CrossRefGoogle Scholar
  22. ICSD (2006) Inorganic crystal structure database. Fachinformationszentrum Karlsruhe and The US Secretary of Commerce on behalf of the United States CD-ROM.Google Scholar
  23. Kiss AB, Keresztury G, Farkas L (1980) Raman and ir spectra of bohemite (γ-AlOOH). Evidence for the recently discarded D 17 2h space group. Spectrochim Acta 36A:653–658Google Scholar
  24. Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37(6):1121–1129CrossRefGoogle Scholar
  25. Krokidis X, Raybaud P, Gobichon AE, Rebours B, Euzen P, Toulhoat H (2001) Theoretical study of the dehydration process of boehmite to γ-alumina. J Phys Chem B 105:5121–5130CrossRefGoogle Scholar
  26. Liu P, Kendelewicz T, Brown GE, Nelson EJ, Chambers SA (1998) Reaction of water vapor with α-Al2O3(0001) and α-Fe2O3(0001) surfaces: synchrotron x-ray photoemission studies and thermodynamic calculations. Surf Sci 417:53–65CrossRefGoogle Scholar
  27. Montanari B, Civalleri B, Zicovich-Wilson CM, Dovesi R (2006) Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3). Int J Quantum Chem 106:1703–1714CrossRefGoogle Scholar
  28. Orlando R, Torres FJ, Pascale F, Ugliengo P, Zicovich-Wilson C, Dovesi R (2006) Vibrational spectrum of katoite Ca3Al2 [(OH)4]3: a periodic ab initio study. J Phys Chem B 110:692–701CrossRefGoogle Scholar
  29. Pascale F, Tosoni S, Zicovich-Wilson C, Ugliengo P, Orlando R, Dovesi R (2004a) Vibrational spectrum of brucite, Mg(OH)2: a periodic ab-initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 396:308–315CrossRefGoogle Scholar
  30. Pascale F, Zicovich-Wilson CM, Gejo FL, Civalleri B, Orlando R, Dovesi R (2004b) The calculation of the vibrational frequencies of the crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897CrossRefGoogle Scholar
  31. Pascale F, Catti M, Damin A, Orlando R, Saunders VR, Dovesi R (2005a) Vibration frequencies of Ca3 Fe2Si3 O12 andradite. An ab initio study with the CRYSTAL code. J Phys Chem B 109:18522–18527CrossRefGoogle Scholar
  32. Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005b) vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. J Phys Chem B 109:6146–6152CrossRefGoogle Scholar
  33. Prencipe M, Pascale F, Zicovich-Wilson CM, Saunders VR, Orlando R, Dovesi R (2004) The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation. Phys Chem Miner 31:559–564CrossRefGoogle Scholar
  34. Priya GK, Padmaja P, Warrier KGK, Damodaran AD, Aruldhas G (1997) Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by fourier transform infrared spectroscopy. J Mater Sci Lett 16:1584–1587CrossRefGoogle Scholar
  35. Raybaud P, Digne M, Iftimie R, Wellens W, Euzen P, Toulhoat H (2001) Morphology and surface properties of boehmite (γ-AlOOH): a density functional theory study. J Catal 201:236–246CrossRefGoogle Scholar
  36. Rosso KM, Rustad JR (2001) Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations. Am Mineral 86:312–317Google Scholar
  37. Ruan HD, Frost RL, Kloprogge JT (2001) Comparison of raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J Raman Spectrosc 32:745–750CrossRefGoogle Scholar
  38. Ruan HD, Frost RL, Kloprogge JT, Duong L (2002) Far-infrared spectroscopy of alumina phases. Spectrochim Acta 58A:265–272CrossRefGoogle Scholar
  39. Russell JD, Farmer VC (1978) Lattice vibrations of boehmite (γ-AlOOH): evidence for C 12 2v rather than D 17 2h space group. Spectrochim Acta 34A:1151–1153CrossRefGoogle Scholar
  40. Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite and ZMS-5 zeolite catalysts. comparison based on ab initio calculations. J Phys Chem B 105:1603–1613CrossRefGoogle Scholar
  41. Slade RC, Halstead TK (1980) Evidence for proton pairs in γ-AlOOH (boehmite) from nmr absorption spectra. J Solid State Chem 32:119–122CrossRefGoogle Scholar
  42. Stegmann MC, Vivien D, Mazieres C (1973) Etude des modes de vibration infrarouge dans les oxyhydroxydes d’aluminium boehmite et diaspore. Spectrochim Acta 29A:1653–1663CrossRefGoogle Scholar
  43. Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the OH vibrational frequency in crystalline solids. Mol Phys 103(18):2549–2558CrossRefGoogle Scholar
  44. Ugliengo P, Pascale F, Mérawa M, Labéguerie P, Tosoni S, Dovesi R (2004) Infrared spectra of hydrogen-bonded ionic crystals: ab initio study of Mg(OH)2 and β−Be(OH)2. J Phys Chem B 108:1362–1367CrossRefGoogle Scholar
  45. Wang SL, Johnston CT (2000) Assignement of the structural oh stretching bands of gibbsite. Am Mineral 85:739–744Google Scholar
  46. Winkler B, Milman BWV, Hennion B, Payne MC, Lee MH, Lin JS (1995) Ab initio total energy study of brucite, diaspore and hypothetical hydrous wadsleyite. Phys Chem Miner 22:461–467CrossRefGoogle Scholar
  47. Winkler B, Hytha M, Pickard C, Milman V, Warren MC, Segall M (2001) Theoretical investigation of bonding in diaspore. Eur J Mineral 13:343–349CrossRefGoogle Scholar
  48. Wolverton C, Hass KC (2001) Phase stability and structure af spinel-based transition aluminas. Phys Rev B 63(2):024102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yves Noel
    • 1
  • Raffaella Demichelis
    • 2
  • Fabien Pascale
    • 3
  • Piero Ugliengo
    • 2
  • Roberto Orlando
    • 4
  • Roberto Dovesi
    • 5
  1. 1.Lab. PMMPUniversité Pierre et Marie Curie-Paris 6, UMR 7160ParisFrance
  2. 2.Dipartimento di Chimica IFMUniversità di TorinoTurinItaly
  3. 3.Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, UMR-CNRS-7036Université Henri Poincaré, Nancy IVandoeuvre-lès-Nancy Cedex 05France
  4. 4.Dipartimento di Scienze e Tecnologie AvanzateUniversità del Piemonte OrientaleAlessandriaItaly
  5. 5.Dipartimento di Chimica IFM, Centre of ExcellenceUniversità di Torino and NIS (Nanostructured Interfaces and Surfaces)TurinItaly

Personalised recommendations