Advertisement

Physics and Chemistry of Minerals

, Volume 35, Issue 8, pp 455–465 | Cite as

Crystal structures of iron bearing tetrahedrite and tennantite at 25 and 250°C by means of Rietveld refinement of synchrotron data

  • Karen Friese
  • Andrzej Grzechnik
  • Emil MakovickyEmail author
  • Tonči Balić-Žunić
  • Sven Karup-Møller
Original Paper

Abstract

Rietveld refinement of X-ray synchrotron data was performed for two synthetic tetrahedrite samples, with 0.61 and 1.83 Fe atoms, and two synthetic tennantite samples with 0.10 and 1.23 Fe atoms p.f.u. M12(Sb,As)4S13. Measurements were performed at 25 and 250°C. For both the phases, increased Fe substitution is reflected in the increased tetrahedral ‘Cu1’–S distance (‘Cu1’ is a site of Fe substitution) and Cu2–S distances. Cu2 was refined as a split position; the Cu2–Cu2 split about the plane of the S12S2 triangle is about 0.56 and 0.65 Å for tetrahedrite and tennantite, respectively. Cu2–Cu2 distances in the structure cavity are 2.8–2.9 Å. Between 25 and 250°C, the lattice parameter a increased by 0.02–0.04 Å and the interatomic distances by 0.01 Å on an average. Thermal expansion coefficients of little-substituted samples are similar to those of unsubstituted samples, whereas thermal expansion appears to decrease with increasing substitution by Fe. The Cu2–Cu2 split increases at 250°C by about 0.1 Å for tetrahedrite and by more than 0.15 Å for tennantite but the cage expansion is minimal so that the Cu2–Cu2 distances in the cavity decrease with temperature. Difference Fourier maps indicate that there is little residual electron density left between the two Cu2 half-sites in tetrahedrite but this inter-site density is substantially higher in tennantite. It increases with temperature, especially in the little-substituted tennantite sample.

Keywords

Tetrahedrite Tennantite Iron substitution Rietveld refinement Crystal structure at 25 and 250°C Split trigonal planar copper positions 

Notes

Acknowledgments

The synchrotron experiments were carried out during the beamtime HS-2693; the experimental assistance from the staff of the Swiss–Norwegian Beamlines at ESRF is gratefully acknowledged. EM, SKM, and TBŽ have been supported by the grant no. 21–03–0519 of the State Research Council for Nature and Universe (Denmark). AG and KF acknowledge support by the European Mineral Science Initiative (EuroMinSci/Eurocore) of the European Science Foundation as well as the additional financial support from the Ministerio de Ciencia y Tecnología (Spain) and the Gobierno Vasco. Helpful reviews by Prof. F. di Benedetto and Prof. R.R. Gainov are gratefully acknowledged.

References

  1. Andreasen JW, Makovicky E, Lebech B, Karup- Møller S (2008) Role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data. Phys Chem Miner (in press)Google Scholar
  2. Bortnikov MS, Nekrasov IY (1987) Composition and phase relationships of tennantite in the system Cu–Fe–As–S at 500°C. Dokl Akad Nauk SSSR 297:449–452Google Scholar
  3. Charnock JM, Garner CD, Pattrick RAD, Vaughan DJ (1989) EXAFS and Mössbauer spectroscopic study of Fe-bearing tetrahedrites. Mineral Mag 53:193–199CrossRefGoogle Scholar
  4. di Benedetto F, Bernardini GP, Borrini D, Emiliani C, Cipriani C, Danti C, Caneschi A, Gatteschi D, Romanelli M (2002) Crystal chemistry of tetrahedrite solid solution: EPR and magnetic investigations. Can Miner 40:837–847CrossRefGoogle Scholar
  5. di Benedetto F, Bernardini GP, Cipriani C, Emiliani C, Gatteschi D, Romanelli M (2005) The distribution of Cu(II) and the magnetic properties of the synthetic analogue of tetrahedrite: Cu12Sb4S13. Phys Chem Miner 32:155–164CrossRefGoogle Scholar
  6. Gainov RR, Dooglav AV, Pen’kov IN (2006) Evidence for low-temperature internal dynamics in Cu12As4S13 according to copper NQR and nuclear relaxation. Solid State Commun 140:544–548CrossRefGoogle Scholar
  7. Hall SR, Cervelle B, Levy C (1974) The effect of substitution of Cu by Zn, Fe and Ag on the optical properties of synthetic tetrahedrite, Cu12Sb4S13. Bull Soc Fr Mineral Cristallogr 97:18–26Google Scholar
  8. Johnson ML, Burnham CW (1985) Crystal structure refinement of an arsenic bearing argentian tetrahedrite. Am Mineral 70:165–170Google Scholar
  9. Johnson NE, Craig JR, Rimstid JD (1987) Effects of substitutions on the cell dimension of tetrahedrite. Can Mineral 25:237–244Google Scholar
  10. Kalbskopf R (1971) Die Koordination des Quecksilbers im Schwazit. Tschermaks Mineral Petrol Mitteilungen 16:173–175CrossRefGoogle Scholar
  11. Kalbskopf R (1972) Strukturverfeinerung des Freibergits. Tschermaks Mineral Petrol Mitteilungen 18:147–155CrossRefGoogle Scholar
  12. Kaplunnik LN, Pobedimskaya EA, Belov NV (1980) The crystal structure of schwazite (Cu4.4Hg1.6)Cu6Sb4S12. Kristallografiya 253:105–107Google Scholar
  13. Karanovic Lj, Cvetkovic Lj, Poleti D, Balic-Zunic T, Makovicky E (2002) Crystal and absolute structure of enargite from Bor (Serbia). Neues Jahrbuch für Mineralogie Monatshefte 6:241–253CrossRefGoogle Scholar
  14. Karanovic Lj, Cvetkovic Lj, Poleti D, Balic-Zunic T, Makovicky E (2003) Structural and optical properties of schwazite from Dragodol (Serbia). Neues Jahrbuch für Mineralogie Monatshefte 503–520Google Scholar
  15. Karup-Møller S, Makovicky E (2004) Exploratory studies of the solubility of minor elements in tetrahedrite VI. Zinc and the combined zinc–mercury and iron–mercury substitutions N Jb Miner Mh 11:508–524CrossRefGoogle Scholar
  16. Lind L, Makovicky E (1982) Phase relations in the system Cu–Sb–S at 200°C, 108Pa by hydrothermal synthesis. Microprobe analysis of tetrahedrite—a warning. N Jb Miner Abh 145:134–156Google Scholar
  17. Machatschki F (1928) Formel und Kristallstruktur des Tetraedrites. Nor Geol Tidskr 10:23Google Scholar
  18. Makovicky E, Karup-Møller S (1994) Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, V and Pb. Unit-cell parameter changes on substitution and the structural role of “Cu2+”. N Jb Miner Abh 167:89–123Google Scholar
  19. Makovicky E, Skinner BJ (1978) Studies of the sulfosalts of copper. VI. Low-temperature exsolution on synthetic tetrahedrite solid solution, Cu12+xSb4+yS13. Can Mineral 16:611–623Google Scholar
  20. Makovicky E, Skinner BJ (1979) Studies of the sulfosalts of copper. VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13.8Sb4S13 of unsubstituted synthetic tetrahedrite. Can Miner 17:619–634Google Scholar
  21. Makovicky E, Forcher K, Lottermoser W, Amthauer D (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Miner Petrol 43:73–81CrossRefGoogle Scholar
  22. Makovicky E, Tippelt G, Forcher K, Lottermoser W, Karup-Møller S, Amthauer G (2003) Mössbauer study of Fe-bearing synthetic tennantite. Can Miner 41:1125–1134CrossRefGoogle Scholar
  23. Makovicky E, Karanović L, Poleti D, Balić-Žunić T (2005) Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13. Can Miner 43:679–688CrossRefGoogle Scholar
  24. Pattrick RAD, van der Laan G, Vaughan DJ, Henderson CMB (1993) Oxidation state and electronic configuration determination of copper in tetrahedrite group minerals by L-edge absorption spectroscopy. Phys Chem Miner 20:395–401CrossRefGoogle Scholar
  25. Pauling L, Neumann EW (1934) The crystal structure of binnite (Cu,Fe)12As4S13, and the chemical composition and structure of the minerals of the tetrahedrite group. Z Kristallogr 88:54–62Google Scholar
  26. Peterson RC, Miller I (1986) Crystal structure and cation distribution in freibergite and tetrahedrite. Mineral Mag 50:717–721CrossRefGoogle Scholar
  27. Petříček V, Dušek M, Palatinus L (2000) Jana2000. The crystallographic computing system. Institute of Physics, PragueGoogle Scholar
  28. Pfitzner A (1997) Die Präparative Anvendung der Kupfer (I)-halogenid-Matrix zur Synthese neuer Materialen. Habilitationschrift Universität SiegenGoogle Scholar
  29. Pfitzner A, Evain M, Petřiček V (1997) Cu12Sb4S13 a temperature-dependent structure investigation. Acta Crystallogr 53:337–345CrossRefGoogle Scholar
  30. Tatsuka K, Morimoto N (1977) Tetrahedrite stability relations in the Cu-Fe-Sb-S system. Am Mineral 62:1101–1109Google Scholar
  31. Vaughan DJ, Burns RG (1972) Mössbauer spectroscopy and bonding in sulfide minerals containing four-coordinated iron. Proc 24th Int Geol Congr, Montreal, vol 14. pp 156–167Google Scholar
  32. Wuensch BJ (1964) The crystal structure of tetrahedrite, Cu12Sb4S13. Z Kristallogr 119:437–453Google Scholar
  33. Wuensch BJ, Takeuchi Y, Nowacki W (1966) Refinement of the crystal structure of binnite, Cu12As4S13. Z Kristallogr 123:1–20Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Karen Friese
    • 1
  • Andrzej Grzechnik
    • 1
  • Emil Makovicky
    • 2
    Email author
  • Tonči Balić-Žunić
    • 2
  • Sven Karup-Møller
    • 3
  1. 1.Departamento de Física de la Materia CondensadaUniversidad del País VascoBilbaoSpain
  2. 2.Department of Geography and GeologyUniversity of CopenhagenCopenhagenDenmark
  3. 3.Institute for Environment and ResourcesDanish Technical UniversityLyngbyDenmark

Personalised recommendations