Physics and Chemistry of Minerals

, Volume 35, Issue 7, pp 381–386

First-principles simulation of high-pressure polymorphs in MgAl2O4

Original Paper

Abstract

We have used density functional theory to investigate the stability of MgAl2O4 polymorphs under pressure. Our results can reasonably explain the transition sequence of MgAl2O4 polymorphs observed in previous experiments. The spinel phase (stable at ambient conditions) dissociates into periclase and corundum at 14 GPa. With increasing pressure, a phase change from the two oxides to a calcium-ferrite phase occurs, and finally transforms to a calcium-titanate phase at 68 GPa. The calcium-titanate phase is stable up to at least 150 GPa, and we did not observe a stability field for a hexagonal phase or periclase + Rh2O3(II)-type Al2O3. The bulk moduli of the phases calculated in this study are in good agreement with those measured in high-pressure experiments. Our results differ from those of a previous study using similar methods. We attribute this inconsistency to an incomplete optimization of a cell shape and ionic positions at high pressures in the previous calculations.

Keywords

MgAl2O4 phases Ab initio calculations Phase transition Equation of state High pressure 

References

  1. Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High-pressure transitions in the system MgAl2O4–CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle. Phys Earth Planet Int 115:67–77CrossRefGoogle Scholar
  2. Beltrán A, Gracia L, Andrés J, Franco R, Recio JM (2002) Stability of MgAl2O4 under high-pressure conditions. High Press Res 22:447–450CrossRefGoogle Scholar
  3. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  4. Catti M (2001) High-pressure stability, structure and compressibility of Cmcm-MgAl2O4: an ab initio study. Phys Chem Miner 28:729–736CrossRefGoogle Scholar
  5. Catti M, Valerio G, Dovesi R, Causà M (1994) Quantum-mechanical calculation of the solid-state equilibrium MgO + αAl2O3 → MgAl2O4 (spinel) versus pressure. Phys Rev B 49:14179–14187CrossRefGoogle Scholar
  6. d’Arco P, Silvi B, Roetti C, Orlando R (1991) Comparative study of spinel compounds: a pseudopotential periodic Hartree–Fock calculation of Mg2SiO4, Mg2FeO4, Al2MgO4, and GaMgO4. J Geophys Res 96:6107–6112CrossRefGoogle Scholar
  7. Dewaele A, Fiquet G, Andrault D, Hausermann D (2000) P-V-T equation of state of periclase from synchrotron radiation measurements. J Geophys Res 105:2869–2877CrossRefGoogle Scholar
  8. Finger LW, Hazen RM, Hofmeister AM (1986) High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels. Phys Chem Miner 13:215–220CrossRefGoogle Scholar
  9. Gasparik T, Tripathi A, Paeise JB (2000) Structure of a new Al-rich phase, [K,Na]0.9[Mg,Fe]2[Mg,Fe,Al,Si]6O12, synthesized at 24 GPa. Am Mineral 85:613–618Google Scholar
  10. Gracia L, Beltrán A, Andrés J, Franco R, Recio M (2002) Quantum-mechanical simulation of MgAl2O4 under high pressure. Phys Rev B 66:224114CrossRefGoogle Scholar
  11. Guignot N, Andrault D (2004) Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Phys Earth Planet Int 143-144:107–128CrossRefGoogle Scholar
  12. Irifune T (1993) Phase transformations in the earth’s mantle and subducting slabs: implications for their compositions, seismic velocity and density structures and dynamics. Island Arc 2:55–71CrossRefGoogle Scholar
  13. Irifune T, Naka H, Sanehira T, Inoue T, Funakoshi K (2002) In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Phys Chem Miner 29:645–654CrossRefGoogle Scholar
  14. Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255CrossRefGoogle Scholar
  15. Kirfel A, Eichhorn K (1990) Accutare structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr A46:271–284Google Scholar
  16. Kojitani H, Hisatomi R, Akaogi M (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. Am Mineral 92:1112–1118CrossRefGoogle Scholar
  17. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  19. Lin JF, Degtyareva O, Prewitt CT, Dera P, Sata N, Gregoryanz E, Mao HK, Hemley R (2004) Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nat Mater 3:389–393CrossRefGoogle Scholar
  20. Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Int 150:239–263CrossRefGoogle Scholar
  21. Liu LG (1978) A new high-pressure phase of spinel. Earth Planet Sci Lett 41:398–404CrossRefGoogle Scholar
  22. Miura H, Hamada Y, Suzuki T, Akaogi M, Miyajima N, Fujino K (2000) Crystal structure of CaMg2Al6O12, a new Al-rich high pressure form. Am Mineral 85:1799–1803Google Scholar
  23. Mo S-D, Ching WY (1996) Electric structure of normal, inverse, and partially inverse spinels in the MgAl2O4 system. Phys Rev B 54:16555–16561CrossRefGoogle Scholar
  24. Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett 236:914–932CrossRefGoogle Scholar
  25. Ono S, Hirose K, Kikegawa T, Saito Y (2002) The compressibility of a natural composition calcium ferrite-type aluminous phase to 70 GPa. Phys Earth Planet Int 131:311–318CrossRefGoogle Scholar
  26. Ono S, Ohishi Y, Isshiki M, Watanuki T (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. J Geophys Res 110:B02208CrossRefGoogle Scholar
  27. Ono S, Kikegawa T, Ohishi Y (2006a) The stability and compressibility of MgAl2O4 high-pressure polymorphs. Phys Chem Miner 33:200–206CrossRefGoogle Scholar
  28. Ono S, Oganov AR, Koyama T, Shimizu H (2006b) Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: implications for the electrical conductivity of the base of the lower mantle. Earth Planet Sci Lett 246:326–335CrossRefGoogle Scholar
  29. Ono S, Kikegawa T, Ohishi Y (2006c) Structural properties of CaIrO3-type MgSiO3 up to 144 GPa. Am Mineral 91:475–478CrossRefGoogle Scholar
  30. Pendás AM, Costales A, Blanco MA, Recio JM, Luaña V (2000) Local compressibilities in crystals. Phys Rev B 62:13970–13978CrossRefGoogle Scholar
  31. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  32. Recio JM, Franco R, Pendás AM, Blanco MA, Pueyo L (2001) Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Phys Rev B 63:184101CrossRefGoogle Scholar
  33. Richet P, Xu JA, Mao HK (1988) Quasi-hydrostatic compression of ruby to 500 kbar. Phys Chem Miner 16:207–211CrossRefGoogle Scholar
  34. Ringwood AE (1979) Origin of the Earth and moon. Springer, New YorkGoogle Scholar
  35. Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Shigeaki Ono
    • 1
    • 2
  • John P. Brodholt
    • 1
  • G. David Price
    • 1
  1. 1.Department of Earth SciencesUniversity College LondonLondonUK
  2. 2.Institute for Research on Earth EvolutionJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations