Physics and Chemistry of Minerals

, Volume 35, Issue 7, pp 359–366 | Cite as

The compressibility and high pressure structure of diopside from first principles simulation

  • Andrew M. Walker
  • Richard P. Tyer
  • Richard P. Bruin
  • Martin T. Dove
Original Paper

Abstract

The structure of diopside (CaMgSi2O6) has been calculated at pressures between 0 and 25 GPa using the planewaves and pseudopotentials approach to density functional theory. After applying a pressure correction of 4.66 GPa to allow for the under-binding usually associated with the generalized gradient approximation, cell parameters are in good agreement with experiment. Fitting to the third-order Birch–Murnaghan equation of state yields values of 122 GPa and 4.7 for the bulk modulus and its pressure derivative. In addition to cell parameters, our calculations provide all atomic positional parameters to pressures considerably beyond those currently available from experiment. We have analyzed these data in terms of polyhedral rigidity and regularity and find that the most compressible Ca polyhedron becomes markedly less anisotropic above 10 GPa.

Keywords

Diopside Density functional theory Equation of state Pyroxene Compression 

Supplementary material

269_2008_229_MOESM1_ESM.pdf (596 kb)
Supplementary material (PDF 595 kb)

References

  1. Balić Žunić T, Makovicky E (1996) Determination of the centroid or ‘the best center’ of a coordination polyhedron. Acta Crystallographica B 52:78–81Google Scholar
  2. Bianchi R, Forni A, Oberti R (2005) Multipole-refined charge density study of diopside at ambient conditions. Phys Chem Miner 32:638–645CrossRefGoogle Scholar
  3. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 86:5727–5730Google Scholar
  4. Dove MT (1989) On the computer modeling of diopside: toward a transferable potential for silicate minerals. Am Mineral 74:774–779Google Scholar
  5. Gibbs GV, Cox DF, Ross NL, Crawford TD, Burt JB, Rosso KM (2005) A mapping of the electron localization function for earth materials. Phys Chem Miner 32:208–221CrossRefGoogle Scholar
  6. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871CrossRefGoogle Scholar
  7. Jung DY, Oganov AR (2005) Basics of first-principles simulation of matter under extreme conditions. In: Miletich R (ed) Mineral behaviour at extreme conditions, vol 7 of EMU notes in mineralogy. European Mineralogical Union, Budapest, pp 117–138Google Scholar
  8. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138CrossRefGoogle Scholar
  9. Levien L, Prewitt CT (1981) High-pressure structural study of diopside. Am Mineral 66:315–323Google Scholar
  10. Makovicky E, Balić-Žunić T (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica B 54:766–773Google Scholar
  11. McCormick TC, Hazen RM, Angel RJ (1989) Compressibility of omphacite to 60 kbar: role of vacancies. Am Mineral 74:1287–1292Google Scholar
  12. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  13. Oganov AR, Brodholt JP, Price GD (2001) Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet Sci Lett 184:555–560CrossRefGoogle Scholar
  14. Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters. In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102Google Scholar
  15. Perdew JP, Burke K, Emzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  16. Prencipe M, Tribaudino M, Pavese A, Hoser A, Reehuis M (2000) A single-crystal neutron-diffraction investigation of diopside at 10 K. Can Mineral 38:183–189CrossRefGoogle Scholar
  17. Segall MD, Lindan PJD, Probert MJ, Pickard, CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the castep code. J Phys Condens Matter 14:2717–2743CrossRefGoogle Scholar
  18. Thomas J, Tyer RP, Allan RJ, Dove MT, Austen KF, Walker AM, Bruin RP, Petit L, Durrant MC, (2007) Science carried out as part of the NW-GRID project using the eMinerals infrastructure. Proceedings of the UK e-Science all hands meeting 2007, pp 220–227Google Scholar
  19. Thompson RM, Downs RT (2001) Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. Acta Crystallographica B 57:119–127Google Scholar
  20. Thompson RM, Downs RT (2003) Model pyroxenes I: ideal pyroxene topologies. Am Mineral 88:653–666Google Scholar
  21. Thompson RM, Downs RT (2004) Model pyroxenes II: structural variation as a function of tetrahedral rotation. Am Mineral 89:614–628Google Scholar
  22. Thompson RM, Downs RT (2008) The crystal structure of diopside at pressure to 10 GPa. Am Mineral 93:177–186CrossRefGoogle Scholar
  23. Thompson RM, Downs RT, Redhammer GJ (2005) Model pyroxenes III: volume of C2/c pyroxenes at mantle P, T, and x. Am Mineral 90:1840–1851CrossRefGoogle Scholar
  24. Tribaudino M, Prencipe M, Bruno M, Levy D (2000) High-presure behaviour of Ca-rich C2/c clinopyroxenes along the join diopside-enstatite (CaMgSi2O6). Phys Chem Miner 27:656–664CrossRefGoogle Scholar
  25. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue problem. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  26. Vanderbilt D (1998) First-principles theory of structural phase transitions in cubic perovskites. J Korean Phys Soc 32:S103–S106Google Scholar
  27. Walker AM, Hermann J, Berry AJ, O’Neill HSC (2007) Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. J Geophys Res 112, art. no. B05211Google Scholar
  28. Weidner DJ, Li L, Brodholt J, Price GD (2006) Towards a thermoelastic reference earth model. EOS transactions of the AGU, 87 (52), Fall meeting supplement, Abstract MR14A–01Google Scholar
  29. Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrew M. Walker
    • 1
  • Richard P. Tyer
    • 2
  • Richard P. Bruin
    • 1
  • Martin T. Dove
    • 1
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.STFC Daresbury LaboratoryWarringtonUK

Personalised recommendations