Physics and Chemistry of Minerals

, Volume 35, Issue 6, pp 321–330 | Cite as

(An)elastic softening from static grain boundaries and possible effects on seismic wave propagation

Original Paper


It is argued that low-frequency wave propagation shows, in most cases, very little dependence on the atomistic properties of grain boundaries if the thickness of the grain boundary is atomistically thin while the grain size is in the mm region. Large effects do exist for specific textures (e.g. the brick wall texture). The essential ingredient for the assessment of an-elastic and non-linear elastic features of seismic wave propagation does not primarily depend on the structural properties of immobile, dry grain boundaries but on the way the grain boundary properties can be related to those of macroscopic mineral assemblies. Specific results for coated sphere textures are derived using Hashin-Shtrikman theory. An-elastic seismic features are more likely to be related to the mobility of boundaries and dislocations which can be attached to the grain boundaries, or bulk-related defect structures, rather than the intrinsic materials properties of the grain boundaries.


Elasticity Interfaces Effective medium theories 


  1. Achenbach JD, Zhu H (1990) Effect of interfaces on micro and macromechanical behaviour of hexagonal–array fiber composites. J Appl Mech-ASME 57:956–963CrossRefGoogle Scholar
  2. Adams JM, Warner M (2005) Soft elasticity in smectic elastomers. Phys Rev 72:011703Google Scholar
  3. Andrews J, Deuss A, Woodhouse J (2006) Coupled normal-mode sensitivity to inner–core shear velocity and attenuation. Geophys J Int 167:204–212CrossRefGoogle Scholar
  4. Aubry S (1983) The twist map, the extended Frenkel-Kondorova model and the devils staircase. Phys D 7:240–258CrossRefGoogle Scholar
  5. Benveniste Y (1987) A new approach to the Mori-Tanaka theory in composite-materials. Mech Mater 6:147–157CrossRefGoogle Scholar
  6. Bowden FP, Taylor D (1950) Friction and Lubrication of Solids. Clarendon Press, OxfordGoogle Scholar
  7. Calleja M, Dove MT, Salje EKH (2003) Trapping of oxygen vacancies on twin walls of CaTiO3: a computer simulation study. J Phys Condens Matter 15:2301–2307CrossRefGoogle Scholar
  8. Carpick RW Agrait N, Ogletree DF, Salmeron M (1996) Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12:3334–3340CrossRefGoogle Scholar
  9. Chatterjee SN, Kibler JJ (1979) Modern developments in composite materials and structures In: Herakovich CT, (ed). ASME, p 269Google Scholar
  10. Chrosch J, Salje EKH (1999) The temperature dependence of the domain wall width in LaAlO3. J Appl Phys 85:722–727CrossRefGoogle Scholar
  11. Conti S, Salje EKH (2001) Surface structure of ferroelastic domain walls: a continuum elasticity approach. J Phys Condens Matter 13:L847–L854CrossRefGoogle Scholar
  12. Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004), Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior. Geophys Res Lett 31:L16604CrossRefGoogle Scholar
  13. Faul UF, Jackson I (2004) Shear wave attenuation and dispersion in melt bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:B06202CrossRefGoogle Scholar
  14. Faul UF, Jackson I (2005) The seismological signature of temperature and grain size in the upper mantle. Earth Planet Sci Lett 234:119–134CrossRefGoogle Scholar
  15. Faul UF, Jackson I (2007) Diffusion creep of dry, melt-free olivine. J Geophys Res 112:B04204CrossRefGoogle Scholar
  16. Frost HJ, Ashby MF (1982) Deformation mechanism maps: The plasticity of metals and ceramics, Elsevier, New YorkGoogle Scholar
  17. Green AE, Zerna W (1954) Theoretical Elasticity. Clarendon Press, OxfordGoogle Scholar
  18. Grabovsky Y, Kohn RV (1995a) Microstructures minimizing the energy of a 2-phase elastic compositein 2 space dimensions.1.the confocal ellipse construction. J Mech Phys Solids 43:933–947CrossRefGoogle Scholar
  19. Grabovsky Y, Kohn RV (1995b) Microstructures minimizing the energy of a 2-phase elastic compositein 2 space dimensions.2. the vigdergauz microstructure. J Mech Phys Solids 43:949–972CrossRefGoogle Scholar
  20. Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143–150Google Scholar
  21. Hashin Z (1965) Viscoelastic behaviour of heterogenous matter. J Appl Mech 32:630–636Google Scholar
  22. Hashin Z (1985) Large isotropic elastic deformation of composites and porous media. Int J Solids struct 21:711–720CrossRefGoogle Scholar
  23. Hashin Z (1991) Composite materials with viscoelastic interphase: creep and relaxation. Mech Mater 11:135–148CrossRefGoogle Scholar
  24. Hashin Z (1992) Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J Mech Phys Solids 40:767–781CrossRefGoogle Scholar
  25. Hashin Z (2002) Thin interface/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solids 50:2509–2537CrossRefGoogle Scholar
  26. Harrison RJ, Redfern SAT, Salje EKH (2004) Dynamical excitation and anelastic relaxation of ferroelastic domain walls in LaAlO3. Phys Rev B 69:144101CrossRefGoogle Scholar
  27. Hertz H (1881) Ueber die Beruehrung fester elastische Koerper. J Reine Angewandte Mathematik 92:156–171Google Scholar
  28. Hiraga T, Anderson I M, Zimmerman ME, Mei S, Kohlstedt DL (2002) Structure and chemistry of grain boundaries in deformed, olivine + basalt and partially molten lherzolite aggregates: evidence of melt-free grain boundaries. Contrib Mineral Petrol 144:163–175CrossRefGoogle Scholar
  29. Houchmanzadeh B, Lajzerovicz J, Salje EKH (1992) Relaxations near surfaces and interfaces for first, second and third neighbour interactions: theory and applications for polytypism. J Phys Condens Matter 4:9779–9794CrossRefGoogle Scholar
  30. Israelachvili JN (1992) Adhesion forces between surfaces in liquids and condensable vapors. Surf Sci Reports 14:109–159CrossRefGoogle Scholar
  31. Jackson I, Paterson MS (1987) Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence. Phys Earth Planet Interiors 45:349–367CrossRefGoogle Scholar
  32. Jackson I, Fitz Gerald J, Kokkonen H (2000) High-temperature voscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the earth’s inner core. J Geophys Res 105:23605–23634CrossRefGoogle Scholar
  33. Jackson I, Faul UF, FitzGerald JD, Morris SJS (2006) Contrasting viscoelastic behaviour of melt-free and melt-bearing olivine: implications for the nature of grain-boundary sliding. Mater Sci Eng A 442:170–174CrossRefGoogle Scholar
  34. Ji SC, Wang ZC (1999) Elastic properties of forsterite-enstatite composites up to 3.0 GPa. J Geodyna 28:147–174CrossRefGoogle Scholar
  35. Johnson KL (1987) Contact Mechanics. Cambridge University Press, CambridgeGoogle Scholar
  36. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of solids. Pro R Soc Lond A 324:301–313CrossRefGoogle Scholar
  37. Khalil-Allafi J, Schmahl WW, Reinecke T (2005) Order parameter evolution and Landau free energy coefficients for the B2<->R-phase transition in a NiTi shape memory alloy. Smart Mater Struct 14:S192–S196CrossRefGoogle Scholar
  38. Kityk AV, Schranz W, Sondergeld P, Havlik D, Salje EKH (2000) Low-frequency superelasticity and nonlinear elastic behavior of SrTiO3 crystals. Phy Rev B 61:946–956CrossRefGoogle Scholar
  39. De Kloe R, Drury MR, van Roermund HLM (2000) Evidence for stable grain boundary melt films in experimentally deformed olivine-orthopyroxene rocks. Phys Chem Miner 27:480–494CrossRefGoogle Scholar
  40. Krylov SY, Jinesh KB, Valk H., Dienwiebel M, Frenken JWM (2005) Thermally induced suppression of friction at the atomic scale. Phys Rev E 71:R65101CrossRefGoogle Scholar
  41. Lee WT, Dove MT, Salje EKH (2003) Domain wall structure and domain wall strain. J Appl Phys 93:9890–9897CrossRefGoogle Scholar
  42. Lee WT, Salje EKH, Goncalves-Ferreira L, Dove MT (2006) Intrinsic activation energy for twin-wall motion in the ferroelastic perovskite CaTiO3. Phys Rev 73 (21):214110Google Scholar
  43. Mal AK, Bose SK (1975) Dynamic elastic-moduli of a suspension of imperfectly bonded spheres. Pro Camb Philol Soc 76:587–600Google Scholar
  44. Medyanik SN, Liu WK, Sung IH, Carpick RW (2006) Predictions and observations of multiple slip modes in atomic-scale friction. Phy Rev Lett 97:136106CrossRefGoogle Scholar
  45. Milton GW (2002) The theory of composites. Cambridge University Press, CambridgeGoogle Scholar
  46. Novak J, Salje EKH (1998a) Surface structure of domain walls. J Phys Condens Matt 10:L359–L366CrossRefGoogle Scholar
  47. Novak J, Salje EKH (1998b) Simulated mesoscopic structures of a domain wall in ferroelastic lattices. Eur Phys J B4:279–284Google Scholar
  48. Page KL, PoffenTh, McLain SE, Darling TW, TenCate JA (2004) Local atomic structure of Fountainbleau sandstone : avidence for an amorphous phase? Geophys Res Lett 31:L24606CrossRefGoogle Scholar
  49. Pertsev NA, Salje EKH (2000) Thermodynamics of pseudo-proper and improper ferroelastic inclusions and polycrystals: effect of clamping on phase transitions. Phy Rev B 61:902–908CrossRefGoogle Scholar
  50. Romanowicz B, Durek J (2000) Seismological constraintson attenuation in the earth: a review in Earth’s deep interior: mineral physics and tomography from the atomic to the global scale, vol 117,p 161–177. AGU Geophysical monographGoogle Scholar
  51. Roters L, Lubeck S, Usadel KD (2005) Creep motion in a random-field Ising model. Phys Rev E 63:026113CrossRefGoogle Scholar
  52. Rios S, Salje EKH, Zhang M, Ewing RC (2000) Amorphisation in zircon: evidence for direct impact damage. J Phys Condens Matter 12:2401–2412CrossRefGoogle Scholar
  53. Rios S, Salje EKH, Redfern SAT (2001) Nanoquartz vs. macroquartz: a study of the alpha-beta transition. Eur Phys J B 20:75–83CrossRefGoogle Scholar
  54. Saburi T, Yoshida M, Nenno S (1984) Deformation-behaviour of shape memory Ti-Ni alloy crystals. Scri Metallurgica 18:363–366CrossRefGoogle Scholar
  55. Salje EKH (1993) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, CambridgeGoogle Scholar
  56. Salje E, Devarajan V, Bismayer U, Guimaraes DMC (1983) Phase-transitions in Pb3(P1-xAsxPO4)2 - Influence of the central peak and flip mode on the Raman scattering of hard modes. J Phys C Solid Stat Phys 16:5233–5243CrossRefGoogle Scholar
  57. Salje EKH (2007) An empirical scaling model for averaging elastic properties including interfacial effects. Am Mineral 92:429–432CrossRefGoogle Scholar
  58. Salje EKH (1992) Application of Landau theory for the analysis of phase-transitions in minerals. Phys Reports 215:49–99CrossRefGoogle Scholar
  59. Salje EKH, Chrosch J, Ewing RC (1999) Is ‘metamictization’ of zircon a phase transition. Am Mineral 84:1107–1116Google Scholar
  60. Salje EKH, Zhang M (2006) Hydrous species in ceramics for the encapsulation of nuclear waste: OH in zircon . J Phys Condens Matt 18:L277–281CrossRefGoogle Scholar
  61. Salje EKH, Zhang H, Schryvers D, Bartova B (2007) Quantitative Landau potentials for the martensitic transformation in Ni–Al. Appl Phys Lett 90:221903CrossRefGoogle Scholar
  62. Schmeling H (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. 1. elasticity and anelasticity. Phys Earth Planet Interior 41:34–57CrossRefGoogle Scholar
  63. Socoliuc A, Gnecco E, Maier S, Pfeiffer O, Baratoff A, Bennewitz R, Meyer E (2006) Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313:207–210CrossRefGoogle Scholar
  64. Tan H, Jackson I, Fitz Gerald JD (2001) High temperature voscoelasticity of fine-grained polycrystalline olivine. Phys Chem Mineral 28:641–664CrossRefGoogle Scholar
  65. Trachenko K (2007) Slow dynamics and stress relaxation in a liquid as an elastic medium. Phys Rev B 75:212201CrossRefGoogle Scholar
  66. Trachenko K, Dove MT, Salje EKH (2000) Modelling the percolation type transition in radiation damage. J Appl Phys 87:117702–117707CrossRefGoogle Scholar
  67. Trachenko K, Brazhkin VV, Tsiok OB, Dove MT, Salje EKH (2007) Pressure-induced structural transformation in radiation-amorphized zircon. Phys Rev Lett 98:135502CrossRefGoogle Scholar
  68. Trachenko K, Dove MT, Salje EKH (2003) Large swelling and percolation in irradiated zircon. J Phys Condens Matt 15:6457–6471CrossRefGoogle Scholar
  69. Watt JP (1988) Elastic properties of polycrystalline minerals–comparison of theory and experiment. Phys Chem Mineral 15:579–587CrossRefGoogle Scholar
  70. Wruck B,Salje EKH, Abraham T, Bismayer U (1994) On the thickness of ferroelastic twin boundaries in lead phosphate Pb3(PO4)2 – an X-ray diffraction study. Phase Transitions 48:135–148CrossRefGoogle Scholar
  71. Yoshino T, Nishihara Y, Karato S (2007) Complete wetting of olivine grain boundaries by a hydrous melt near the mantle transition zone. Earth Planet Sci Lett 256:466–472CrossRefGoogle Scholar
  72. Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schluter J, Ewing RC (2000) Annealing of alpha-decay damage in zircon: a Raman spectroscopic study. J Phys Condens Matt 12:3131–3148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations