Physics and Chemistry of Minerals

, Volume 35, Issue 5, pp 249–257 | Cite as

In situ strength measurements on natural upper-mantle minerals

  • Junji Yamamoto
  • Jun-ichi Ando
  • Hiroyuki Kagi
  • Toru Inoue
  • Akihiro Yamada
  • Daisuke Yamazaki
  • Tetsuo Irifune
Original Paper

Abstract

Using in situ strength measurements at pressures up to 10 GPa and at room temperature, 400, 600, and 700°C, we examined rheological properties of olivine, orthopyroxene, and chromian-spinel contained in a mantle-derived xenolith. Mineral strengths were estimated using widths of X-ray diffraction peaks as a function of pressure, temperature, and time. Differential stresses of all minerals increase with increasing pressure, but they decrease with increasing temperature because of elastic strain on compression and stress relaxation during heating. During compression at room temperature, all minerals deform plastically at differential stress of 4–6 GPa. During subsequent heating, thermally induced yielding is observed in olivine at 600°C. Neither orthopyroxene nor spinel shows complete stress relaxation, but both retain some stress even at 700°C. The strength of the minerals decreases in the order of chromian-spinel ≈ orthopyroxene > olivine for these conditions. This order of strength is consistent with the residual pressure of fluid inclusions in mantle xenoliths.

Keywords

Rheology X-ray diffraction measurement Mantle mineral Fluid inclusion Geobarometry 

References

  1. Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperature. In: Ahrens TJ (ed) Mineral Physics & Crystallography, AGU Reference Shelf 2, pp 64–97Google Scholar
  2. Andersen T, Neumann E-R (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320CrossRefGoogle Scholar
  3. Bass JD (1995) Elasticity of minerals, glasses and melts In: Ahrens TJ (ed) Mineral Physics & Crystallography, AGU Reference Shelf 2, pp 45–63Google Scholar
  4. Chen J, Inoue T, Weidner DJ et al (1998) Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys Res Lett 25:575–578CrossRefGoogle Scholar
  5. Chen J, Weidner DJ, Vaughan MT (2002) The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419:824–826CrossRefGoogle Scholar
  6. Decker DL (1971) High-pressure equation of state for NaCl, KCl and CsCl. J Appl Phys 42:3239–3244CrossRefGoogle Scholar
  7. De Vivo B, Frezzotti ML, Lima A et al (1988) Spinel lherzolite nodules from Oahu Island (Hawaii): a fluid inclusion study. Bull Mineral 111:307–319Google Scholar
  8. Frezzotti ML, Burke EAJ, DeVivo B et al (1992) Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur J Mineral 4:1137–1153Google Scholar
  9. Gerward L, Morup S, Topsoe H (1976) Particle size and strain broadening in energy-dispersive X-ray powder patterns. J App Phys 47:822–825CrossRefGoogle Scholar
  10. Green HW, Borch RS (1987) The pressure dependence of creep. Acta Metall 35:1301–1315CrossRefGoogle Scholar
  11. Hirano N, Yamamoto J, Kagi H et al (2004) Young olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench. Contrib Mineral Petrol 148:47–54CrossRefGoogle Scholar
  12. Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory, J AGU Geophys Monogr 138:83–105Google Scholar
  13. Irifune T (2002) Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Min Mag 66:769–790CrossRefGoogle Scholar
  14. Karato S-I, Wu P (1993) Rheology of the upper mantle a synthesis. Science 260:771–778CrossRefGoogle Scholar
  15. Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414CrossRefGoogle Scholar
  16. Kohlstedt DL, Wang Z (2001) Grain-boundary sliding accommodated dislocation creep in dunite. EOS Trans AGU 82:F1137Google Scholar
  17. Kohlstedt DL, Goetze C, Durham WB et al (1975) A new technique for decorating dislocations in olivine. Science 191:1045–1046CrossRefGoogle Scholar
  18. Kung J, Li B, Uchida T et al (2004) In situ measurements of sound velocities and densities across the orthopyroxene—high-pressure clinopyroxene transition in MgSiO3 at high pressure. Phys Earth Planet Int 147:27–44CrossRefGoogle Scholar
  19. Li L, Weidner D, Raterron P et al (2004) Stress measurements of deforming olivine at high pressure. Phys Earth Planet Int 143–144:357–367CrossRefGoogle Scholar
  20. Li L, Weidner D, Raterron P et al (2006) Deformation of olivine at mantle pressure using D-DIA. Eur J Mineral 18:7–19CrossRefGoogle Scholar
  21. Li L, Addad A, Weidner D et al (2007) High pressure deformation in two-phase aggregates. Tectonophysics 439:107–117CrossRefGoogle Scholar
  22. Mackwell SJ (1991) High-temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030CrossRefGoogle Scholar
  23. Mitchell TE, Hwang L, Heuer AH (1976) Deformation in spinel. J Material Sci 11:264–272CrossRefGoogle Scholar
  24. Raterron P, Wu Y, Weidner DJ et al (2004) Low-temperature olivine rheology at high pressure. Phys Earth Planet Int 145:149–159CrossRefGoogle Scholar
  25. Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50:1746–1782Google Scholar
  26. Ross JV, Ave Lallemant HG, Carter NL (1979) Activation volume for creep in the upper mantle. Science 203:261–263CrossRefGoogle Scholar
  27. Sapienza G, Hilton DR, Scribano V (2005) Helium isotopes in peridotite mineral phases from Hyblean Plateau xenoliths (southeastern Sicily, Italy). Chem Geol 219:115–129CrossRefGoogle Scholar
  28. Sawaguchi T, Ishii K (2003) Three-dimensional numerical modeling of lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites. J Struct Geol 25:1425–1444CrossRefGoogle Scholar
  29. Saxena SK, Chatterjee N, Fei Y et al (1993) Thermodynamic data on oxides and silicates. Springer, New YorkGoogle Scholar
  30. Schwab RG, Freisleben B (1988) Fluid CO2 inclusions in olivine and pyroxene and their behaviour under high pressure and temperature conditions. Bull Mineral 111:297–306Google Scholar
  31. Ulmer P, Stalder R (2001) The Mg(Fe)SiO3 orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples. Am Mineral 86:1267–1274Google Scholar
  32. Utsumi W, Funakoshi K, Urakawa S et al (1998) SPring-8 beamlines for high pressure science with multi-anvil apparatus. Rev High Pressure Sci Technol 7:1484–1486Google Scholar
  33. Weidner DJ (1998) Rheological studies at high pressure. In: Hemley RJ, Mao HK (eds) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. Mineralogical Society of America, Washington, DC, pp 493–524Google Scholar
  34. Weidner DJ, Wang Y, Vaughan MT (1994) Yield strength at high pressure and temperature. Geophys Res Lett 21:753–756CrossRefGoogle Scholar
  35. Weidner DJ, Wang Y, Chen G et al (1998) Rheology measurements at high pressure and temperature. Geophys Monogr 101:473–482Google Scholar
  36. Weidner DJ, Chen J, Xu Y et al (2001) Subduction zone rheology. Phys Earth Planet Int 127:67–81CrossRefGoogle Scholar
  37. Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139CrossRefGoogle Scholar
  38. Yamamoto J, Kagi H, Kaneoka I et al (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro Raman spectroscopy. Earth Planet Sci Lett 198:511–519CrossRefGoogle Scholar
  39. Yamamoto J, Kaneoka I, Nakai S et al (2004) Evidence for subduction-related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chem Geol 207:237–259CrossRefGoogle Scholar
  40. Yamamoto J, Kagi H, Kawakami Y et al (2007) Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth Planet Sci Lett 253:369–377CrossRefGoogle Scholar
  41. Zhang J, Wang L, Weidner DJ et al (2002) The strength of moissanite. Am Mineral 87:1005–1008Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Junji Yamamoto
    • 1
    • 2
  • Jun-ichi Ando
    • 3
  • Hiroyuki Kagi
    • 4
  • Toru Inoue
    • 6
  • Akihiro Yamada
    • 6
    • 5
  • Daisuke Yamazaki
    • 6
    • 7
  • Tetsuo Irifune
    • 6
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Institute for Geothermal Sciences, Graduate School of ScienceKyoto UniversityBeppuJapan
  3. 3.Department of Earth and Planetary Systems Science, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Geochemical Laboratory, Graduate School of ScienceThe University of TokyoTokyoJapan
  5. 5.Department of GeologyUniversity of California DavisDavisUSA
  6. 6.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  7. 7.Institute for Study of the Earth’s InteriorOkayama UniversityMisasaJapan

Personalised recommendations