Physics and Chemistry of Minerals

, Volume 35, Issue 4, pp 189–195 | Cite as

CaPtO3 as a novel post-perovskite oxide

  • Kenya Ohgushi
  • Yoshitaka Matsushita
  • Nobuyoshi Miyajima
  • Yoshio Katsuya
  • Masahiko Tanaka
  • Fujio Izumi
  • Hirotada Gotou
  • Yutaka Ueda
  • Takehiko Yagi
Original Paper

Abstract

Structural, morphological, magnetic, and thermal properties have been investigated for a novel post-perovskite oxide CaPtO3 synthesized under high pressure. By comparing obtained structural parameters with those for known post-perovskite compounds, we argue that the chemical bond has a strong covalent character. Precise measurements of the Langevin susceptibility χ 0  = −9.6 × 10−5 emu/mol and Debye temperature θ ∼ 470 K provide a good opportunity to confirm the reliability of first-principle calculations on predicting physical properties of the Earth’s D” layer.

Keywords

Post-perovskite CaPtO3 High-pressure synthesis Rietveld analysis Morphology 

Notes

Acknowledgments

We wish to thank H. Schulze (Bayreuth) for his assistance with TEM sample preparation, A. Yamamoto (Tsukuba) for his cooperation in the structural analysis, K. Niwa (Kashiwa), T. Okada (Kashiwa), A. Yamamoto (Wako), and P. Cordier (Lille) for enlightening discussions, and Y. Kiuchi (Kashiwa) for her technical assistance in SEM experiments. We also acknowledge two anonymous reviewers for useful comments. One of the authors (K. O.) is supported by the Japan Society for the Promotion of Science for Young Scientists.

References

  1. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College, PhiladelphiaGoogle Scholar
  2. Dachs E, Bertoldi C (2005) Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples. Eur J Mineral 17:251–261CrossRefGoogle Scholar
  3. Gibbs GV, Downs JW, Boisen MB (1994) The elusive SiO bond. Rev Mineral 29:331–368Google Scholar
  4. Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwiss 14:477–485CrossRefGoogle Scholar
  5. Hirose K, Fujita Y (2005a) Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys Res Lett 32:L13313, doi: 10.1029/2005GL023219 CrossRefGoogle Scholar
  6. Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005b) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265CrossRefGoogle Scholar
  7. Hyde HG, Andersson S, Bakker M, Plug CM, O’Keeffe M (1979) The (twin) composition plane as an extended defect and structure-building entitiy in crystals. Prog Solid State Chem 12:273CrossRefGoogle Scholar
  8. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the earth’s lowermost mantle. Nature 430:442–445CrossRefGoogle Scholar
  9. Ijjali I, Mitchell K, Huang FQ, Ibers JA (2004) Syntheses and characterization of the actinide manganese selenides ThMnSe3 and UMnSe3. J Solid State Chem 177:257–261CrossRefGoogle Scholar
  10. Izumi F, Ikeda T (2000) A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater Sci Forum 321–324:198–203CrossRefGoogle Scholar
  11. Julien R, Rodier N, Tien V (1978) Structure of uranium scandium sulfide UScS3. Acta Crystallogra Sect B34:2612–2614CrossRefGoogle Scholar
  12. Kojitani H, Furukawa A, Akaogi M (2007a) Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO3. Am Mineral 92:229–232CrossRefGoogle Scholar
  13. Kojitani H, Shirako Y, Akaogi M (2007b) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Inter 165:127–134CrossRefGoogle Scholar
  14. Kubo A, Kiefer B, Shen GY, Prakapenka VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12, doi: 10.1029/2006GL025686 CrossRefGoogle Scholar
  15. Liu HZ, Chen J, Hu J, Martin CD, Weidner DJ, Häusermann D, Mao HK (2005) Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32:L04304, doi: 10.1029/2004GL022068 CrossRefGoogle Scholar
  16. Martin CD, Crichton WA, Liu HZ, Prakapenka V, Chen J, Parise JB (2006a) Phase transitions and compressibility of NaMgF3 (neighborite) in perovskite- and post-perovskite-related structures. Geophys Res Lett 33:L11305, doi: 10.1029/2006GL026150 CrossRefGoogle Scholar
  17. Martin CD, Crichton WA, Liu HZ, Prakapenka V, Chen J, Parise JB (2006b) Rietveld structure refinement of perovskite and post-perovskite phases of NaMgF3 (neighborite) at high pressures. Am Mineral 91:1703–1706CrossRefGoogle Scholar
  18. Martin CD, Chapman KW, Chupas PJ, Prakapenka V, Lee PL, Shastri SD, Parise JB (2007) Compression, thermal expansion, structure, and instability of CaIrO3, the structure model of MgSiO3 post-perovskite. Am Mineral 92:1048–1053CrossRefGoogle Scholar
  19. Mitchell K, Somers RC, Huang Fu Qiang, Ibers JA (2004) Syntheses, structure and magnetic properties of several LnYbQ3 chalcogenides, Q = S, Se. J Solid State Chem 177:709–713CrossRefGoogle Scholar
  20. Miyajima N, Ohgushi K, Ichihara M, Yagi T (2006) Crystal morphology and dislocation microstructures of CaIrO3: a TEM study of an analogue of the MgSiO3 post-perovskite phase. Geophys Res Lett 32:L12302, doi: 10.1029/2005GL025001 CrossRefGoogle Scholar
  21. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  22. Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Minerals 34:679–686CrossRefGoogle Scholar
  23. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 430:445–448CrossRefGoogle Scholar
  24. Ohgushi K, Gotou H, Yagi T, Kiuchi Y, Sakai F, Ueda Y (2006) Metal-insulator transition in Ca1–xNaxIrO3 with post-perovskite structure. Phy Rev B 74:241104CrossRefGoogle Scholar
  25. Pauling L (1960) The Nature of the Chemical Bond. Cornell University Press, New YorkGoogle Scholar
  26. Rodi VF, Babel D (1965) Erdalkaliiridium(IV)-oxide: Kristallstruktur von CaIrO3. Z Anorg Allg Chem 336:17–23CrossRefGoogle Scholar
  27. Schilling G, Kunert C, Schleid T, Meyer G (1992) Metallothermic reduction of the tribromides and tibroiodides of thulium and ytterbium with alkali metals. Z Anorg Allg Chem 618:7–12CrossRefGoogle Scholar
  28. Segal N, Vente JF, Bush TS, Battle PD (1996) Structural and magnetic properties of Sr4–x M xIrO6 (M = Ca, Zn, Cd, Li, Na). J Mater Chem 6:395–401CrossRefGoogle Scholar
  29. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogra Sect A32:751–767CrossRefGoogle Scholar
  30. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004a) Elasticity of post-perovskite MgSiO3. Geophys Res Lett 31:L14603, doi: 10.1029/2004GL020278 CrossRefGoogle Scholar
  31. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004b) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224:241–248CrossRefGoogle Scholar
  32. Tsuchiya J, Tsuchiya T, Wentzcovitch RM (2005) Vibrational and thermodynamic properties of MgSiO3 postperovskite. J Geophys Res 110:B02204, doi: 10.1029/2004JB003409 CrossRefGoogle Scholar
  33. Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: Implications for the D” layer at the core-mantle boundary. Geophys Res Lett 34:L08306, doi: 10.1029/2007GL029407 CrossRefGoogle Scholar
  34. Wong-Ng W, Kaduk JA, Young RA, Jiang F, Swartzendruber LJ, Brown HJ (1999) Investigation of (Sr4–δCaδ)PtO6 using X-ray Rietveld refinement. Powder Diffr 14:181–189Google Scholar
  35. Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D” layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378CrossRefGoogle Scholar
  36. Zhao J, Ross NL, Angel RJ (2004) New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr Sect B60:263–271Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kenya Ohgushi
    • 1
  • Yoshitaka Matsushita
    • 2
  • Nobuyoshi Miyajima
    • 3
  • Yoshio Katsuya
    • 4
  • Masahiko Tanaka
    • 5
  • Fujio Izumi
    • 2
  • Hirotada Gotou
    • 1
  • Yutaka Ueda
    • 1
  • Takehiko Yagi
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan
  2. 2.Quantum Beam CenterNational Institute for Materials Science (NIMS)TsukubaJapan
  3. 3.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  4. 4.SPring-8 Service Co. LtdSayoJapan
  5. 5.BL15XU/SPring8National Institute for Materials Science (NIMS)SayoJapan

Personalised recommendations