Physics and Chemistry of Minerals

, Volume 34, Issue 9, pp 679–686 | Cite as

Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure

  • Ken Niwa
  • Takehiko Yagi
  • Kenya Ohgushi
  • Sébastien Merkel
  • Nobuyoshi Miyajima
  • Takumi Kikegawa
Original Paper

Abstract

Lattice preferred orientations (LPO) developed in perovskite and post-perovskite structured CaIrO3 were studied using the radial X-ray diffraction technique combined with a diamond anvil cell. Starting materials of each phase were deformed from 0.1 MPa to 6 GPa at room temperature. Only weak LPO was formed in the perovskite phase, whereas strong LPO was formed in the post-perovskite phase with an alignment of the (010) plane perpendicular to the compression axis. The present result suggests that the (010) is a dominant slip plane in the post-perovskite phase and it is in good agreement with the crystallographic prediction, dislocation observations via transmission electron microscopy, and a recent result of simple shear deformation experiment at 1 GPa–1,173 K. However, the present result contrasts markedly from the results on MgGeO3 and (Mg,Fe)SiO3, which suggested that the (100) or (110) is a dominant slip plane with respect to the post-perovskite structure. Therefore it is difficult to discuss the behavior of the post-perovskite phase in the Earth’s deep interior based on existing data of MgGeO3, (Mg,Fe)SiO3 and CaIrO3. The possible sources of the differences between MgGeO3, (Mg,Fe)SiO3 and CaIrO3 are discussed.

Keywords

Post-perovskite CaIrO3 High-pressure Lattice preferred orientation 

Notes

Acknowledgments

This paper was improved by the constructive comments of two reviewers, J. Ando and anonymous reviewer, and we deeply appreciate their efforts. This work has been performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 06G047).

References

  1. Carrez P, Ferre D, Cordier P (2007) Implications for plastic flow in the deep mantle from modeling dislocations in MgSiO3 minerals. Nature 446:68–70CrossRefGoogle Scholar
  2. Hammersley AP (1997) Fit2D: an introduction and overview. ESRF97HA02T, ESRF Grenoble, FranceGoogle Scholar
  3. Hirose K, Fujita Y (2005) Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys Res Lett 32:L13313. doi: 10.1029/2005GL023219
  4. Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265CrossRefGoogle Scholar
  5. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430:442–445CrossRefGoogle Scholar
  6. Lay T, Williams Q, Gamero EJ (1998) The core-mantle boundary layer and deep earth dynamics. Nature 392:461–468CrossRefGoogle Scholar
  7. Ma Y, Selvi E, Levitas VI, Hashemi J (2006) Effect of shear strain on the α-ɛ phase transition of iron: a new approach in the rotational diamond anvil cell. J Phys Condens Matter 18:S1075–S1082CrossRefGoogle Scholar
  8. Mao HK, Xu J, Bell PM (1986) Calibration of ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  9. Martin CD, Chapman KW, Chupas PJ, Prakapenka V, Lee PL, Shastri SD, Parise JB (2007) Compression, thermal expansion, structure, and instability of CaIrO3, the structure model of MgSiO3 post-perovskite. Am Mineral 92:1048–1053CrossRefGoogle Scholar
  10. Merkel S, Yagi T (2005) X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev Sci Instrum 76:046109CrossRefGoogle Scholar
  11. Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley RJ (2002) Deformation of polycrystalline MgO at high pressures of the lower mantle. J Geophys Res 107:2271. doi: 10.1029/2001JB000920 Google Scholar
  12. Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao HK, Wenk HR (2006) Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311:644–646CrossRefGoogle Scholar
  13. Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Duffy TS, Wenk HR (2007) Deformation of (Mg,Fe)SiO3 post-perovskite and D″ anisotropy. Science 316:1729–1732CrossRefGoogle Scholar
  14. Miyajima N, Ohgushi K, Ichihara M, Yagi T, Frost DJ (2006) Crystal morphology and dislocation microstructure of CaIrO3: a TEM study of an anologue of the MgSiO3 post-perovskite phase. Geophys Res Lett 33:L12302. doi: 10.1029/2005GL025001
  15. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  16. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448CrossRefGoogle Scholar
  17. Oganov AR, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of Earth’s D″ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438:1142–1144CrossRefGoogle Scholar
  18. Poirier JP, Price GD (1999) Primary slip system of ɛ-iron and anisotropy of the Earth’s inner core. Phys Earth Planet Inter 110:147–156CrossRefGoogle Scholar
  19. Ritsema J, Lay T, Garnero EJ (1998) Seismic anisotropy in the lowermost mantle beneath the Pacific. Geophys Res Lett 25:1229–1232CrossRefGoogle Scholar
  20. Santillan J, Shim SH, Shen G, Prakapenka VB (2006) High-pressure phase transition in Mn2O3: application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys Res Lett 33:L15307. doi: 10.1029/2006GL026423
  21. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Elasticity of post-perovskite MgSiO3. Geophys Res Lett 31:L14603. doi: 10.1029/2004GL020278 CrossRefGoogle Scholar
  22. Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys Chem Miner 32:721–725CrossRefGoogle Scholar
  23. Uchida T, Funamori N, Ohtani T, Yagi T (1996) Differential stress of MgO and Mg2SiO4 under luniaxial stress field. In: High pressure science and technology, World Scientific, London, pp 183–185Google Scholar
  24. Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D” layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378CrossRefGoogle Scholar
  25. Zhang S, Karato S (1995) Lattice preferred orientation of olivine deformed in simple shear. Nature 375:774–777CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ken Niwa
    • 1
  • Takehiko Yagi
    • 1
  • Kenya Ohgushi
    • 1
  • Sébastien Merkel
    • 2
  • Nobuyoshi Miyajima
    • 3
  • Takumi Kikegawa
    • 4
  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan
  2. 2.Laboratoire de Structure et Propriétés de l’Etat Solide UMR CNRS 8008Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  3. 3.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  4. 4.Photon FactoryKEKTsukubaJapan

Personalised recommendations