Physics and Chemistry of Minerals

, Volume 34, Issue 7, pp 485–494 | Cite as

Mineralogy, Mössbauer spectra and electrical conductivity of triphylite Li(Fe2+,Mn2+) PO4

  • K. T. Fehr
  • R. Hochleitner
  • E. SchmidbauerEmail author
  • J. Schneider
Original Paper


The electrical conductivity of monocrystalline triphylite, Li(Fe2+,Mn2+)PO4, with the orthorhombic olivine-type structure was measured parallel (∥) to the [010] direction and ∥ [001] (space group Pnma), between ∼400 and ∼700 K. Electrical measurements on triphylite are of technological interest because LiFePO4 is a promising electrode material for rechargeable Li batteries. Triphylite was examined by electron microprobe, ICP atomic emission spectroscopy, X-ray diffraction, Mössbauer spectroscopy and microscopic analysis. The DC conductivity σDC was determined from AC impedance data (20 Hz–1 MHz) extrapolating to zero frequency. Triphylite shows σDC with activated behavior measured ∥ [010] between ∼500 and ∼700 K during the first heating up, with activation energy of E A = 1.52 eV; on cooling E A = 0.61 eV was found down to ∼400 K and extrapolated σDC (295 K) ∼10−9 Ω−1cm−1; ∥ [001] E A = 0.65 eV and extrapolated σDC(295 K) ∼10−9 to 10−10 Ω−1cm−1, measured during the second heating cycle. The enhanced AC conductivity relative to σDC at lower temperatures indicates a hopping-type charge transport between localized levels. Conduction during the first heating up is ascribed to ionic Li+ hopping. DC polarization experiments showed conduction after the first heating up to be electronic related to lowered activation energy. Electronic conduction appears to be coupled with the presence of Li+ vacancies and Fe3+, formed by triphylite alteration. For comparison, σDC was measured on the synthetic compound LiMgPO4 with olivine-type structure, where also an activated behavior of σDC with E A ∼1.45 eV was observed during heating and cooling due to ionic Li+ conduction; here no oxidation can occur associated with formation of trivalent cations.


Triphylite Impedance spectroscopy Ionic and electronic conduction 57Fe Mössbauer spectra 


  1. Amin R, Balaya P, Maier J (2007) Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem Solid-State Lett 10:A13–A16CrossRefGoogle Scholar
  2. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97-98:498–502CrossRefGoogle Scholar
  3. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130:41–52CrossRefGoogle Scholar
  4. Bohnke O, Emery J, Fourquet J-L (2003) Anomalies in Li+ ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor \((\hbox{Li}_{3x} \hbox{La}_{2/3-x} \square_{1/3-2x}) \hbox{TiO}_{3}.\) Solid State Ionics 158:119–132CrossRefGoogle Scholar
  5. Chung A-Y, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128CrossRefGoogle Scholar
  6. Deganello S (1976) Study of the oxidation of triphylite in the range 20° to 900°C. Z Kristallogr 144:393–400CrossRefGoogle Scholar
  7. Deganello S (1978) The crystal structure of triphylite after oxidation to 670°C. N Jb Miner Mh H3:128–134Google Scholar
  8. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcette M, Tarascon J-M, Masquelier C (2005b) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921CrossRefGoogle Scholar
  9. Delacourt C, Poizot P, Tarascon J-M, Masquelier C (2005a) The existence of a temperature-driven solid solution in Lix FePO4 for 0 ≤ x ≤ 1. Nat Mater 4:254–260CrossRefGoogle Scholar
  10. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233CrossRefGoogle Scholar
  11. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–218CrossRefGoogle Scholar
  12. Finger LW, Rapp GR Jr (1970) Refinement of the crystal structure of triphylite. Carnegie Inst Year Book, Annual Report of the Director of the Geophysical Lab 68:290–292Google Scholar
  13. Fontan F, Huvelin P, Orliac M, Permingeat F (1976) La ferrisicklérite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et le groupe des minéraux à structure de triphylite. Bull Soc fr Minéral Cristallogr 99:274–286Google Scholar
  14. Fransolet A-M, Antenucci D, Speetjens J-M, Tarte P (1984) An X-ray determinative method for the divalent cation ratio in the triphylite-lithiophilite series. Mineral Mag 48:373–381CrossRefGoogle Scholar
  15. Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Cryst 13:325–331CrossRefGoogle Scholar
  16. Goni A, Bonagamba TJ, Silva MA, Panepucci H, Rojo T, Barberis GE (1998) 7Li and 31P nuclear magnetic resonance studies of Li1-3x MgFex PO4. J Appl Phys 84:416–421CrossRefGoogle Scholar
  17. Goni A, Lezama L, Pujana A, Arriortura MI, Rojo T (2001) Clustering of Fe3+ in the Li1-3x Fex MgPO4 (0 < × < 0.1) solid solution. Int Inorg Mater 3:937–942CrossRefGoogle Scholar
  18. Gossner B, Strunz H (1932) Über strukturelle Beziehungen zwischen Phosphaten (Triphylin) und Silikaten (Olivin) und über die chemische Zusammensetzung von Ardennit. Z Kristallogr 83:415–421Google Scholar
  19. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRefGoogle Scholar
  20. Keller P (1974) Phosphatmineralien aus Pegmatiten Südwestafrikas. Der Aufschluss 25:578–591Google Scholar
  21. Laumann A (2005) Kristallchemie von Triphyline - Lithiophylit Mischkristallen. Diploma Thesis, Universität MünchenGoogle Scholar
  22. Li Z, Shinno I (1997) Next nearest neighbor effects in triphylite and related phosphate minerals. Mineralo J 3:99–107CrossRefGoogle Scholar
  23. Lin Z, Dang D, Liu M, Sui Y, Su W, Qian Z, Li Z (2005) Quadrupole splitting distributions in purpurite and related minerals. Hyperfine Inter 163:13–27Google Scholar
  24. Long AR (1982) Frequency-dependent loss in amorphous semiconductors. Adv Phys 31:553–637CrossRefGoogle Scholar
  25. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York, p 346Google Scholar
  26. Macdonald JR (2005) Impedance spectroscopy: models, data fitting, and analysis. Solid State Ionics 176:1961–1969CrossRefGoogle Scholar
  27. Malló A, Fontan F, Melgarejo J-C, Mata JM (1995) The Albera zoned pegmatite field, Eastern Pyrenees, France. Mineral Petrol 55:103–116CrossRefGoogle Scholar
  28. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  29. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97-98:430–432CrossRefGoogle Scholar
  30. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997a) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRefGoogle Scholar
  31. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997b) Phospho-olivines as positive materials for rechargable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  32. Pouchu L, Pichoir F (1984) A new model for quantitative X-ray micro-analysis. Part I: Application to the analysis of homogeneous samples. Rech Aerospat 3:13–38Google Scholar
  33. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51CrossRefGoogle Scholar
  34. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507CrossRefGoogle Scholar
  35. Ravet N, Abouimrane A, Armand M (2003) On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nat Mater 2:702CrossRefGoogle Scholar
  36. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B98:185–189CrossRefGoogle Scholar
  37. Rodriguez-Carvajal J (1990) A program for Rietveld refinement and patters matching analysis. Abstracts of the satellite meeting on powder diffraction of the 15th Congress of the IUCR, Toulouse, p 127Google Scholar
  38. Santoro RP, Newnham RE (1967) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347CrossRefGoogle Scholar
  39. Shi S, Liu L, Ouyang Ch, Wang D, Wang Z, Chen L, Huang X (2003) Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first principles calculations. Phys Rev B68:195108-1–195108-5Google Scholar
  40. Shigley JE, Brown GE Jr (1986) Lithiophilite formation in granitic pegmatites: a reconnaissance experimental study of phosphate crystallization from hydrous aluminosilicate melts. Am Mineral 71:356–366Google Scholar
  41. Song Y, Yang S, Zavalij PY, Whittingham MS (2002) Temperature-dependent properties of FePO4 cathode materials. Mater Res Bull 37:1249–1257CrossRefGoogle Scholar
  42. Takahashi M, Tobishima Sh, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289CrossRefGoogle Scholar
  43. Xu Y-N, Chung S-Y, Bloking JT, Chiang Y-M, Ching WY (2004) Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem Solid-State Lett 7:A131–A134CrossRefGoogle Scholar
  44. Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behaviour of lithium iron phosphates. Electrochem Commun 4:239–244Google Scholar
  45. Yang S, Song Y, Ngala K, Zavalij PY, Whittingham MS (2003) Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides. J Power Sources 119-121:239–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. T. Fehr
    • 1
  • R. Hochleitner
    • 2
  • E. Schmidbauer
    • 3
    Email author
  • J. Schneider
    • 4
  1. 1.Department für Geo- und Umweltwissenschaften, Sektion Mineralogie, Petrologie und GeochemieUniversität MünchenMünchenGermany
  2. 2.Mineralogische StaatssammlungMünchenGermany
  3. 3.Department für Geo- und Umweltwissenschaften, Sektion GeophysikUniversität MünchenMünchenGermany
  4. 4.Department für Geo- und Umweltwissenschaften, Sektion KristallographieUniversität MünchenMünchenGermany

Personalised recommendations