Physics and Chemistry of Minerals

, Volume 34, Issue 3, pp 159–167 | Cite as

The compressibility of Fe- and Al-bearing phase D to 30 GPa

  • Konstantin D. Litasov
  • Eiji Ohtani
  • Akio Suzuki
  • Kenichi Funakoshi
Original Paper


High-pressure in situ X-ray diffraction experiment of Fe- and Al-bearing phase D (Mg0.89Fe0.14Al0.25Si1.56H2.93O6) has been carried out to 30.5 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields values of V 0 = 86.10 ± 0.05 Å3; K 0 = 136.5 ± 3.3 GPa and K′ = 6.32 ± 0.30. If K′ is fixed at 4.0 K 0 = 157.0 ± 0.7 GPa, which is 6% smaller than Fe–Al free phase D reported previously. Analysis of axial compressibilities reveals that the c-axis is almost twice as compressible (K c  = 93.6 ± 1.1 GPa) as the a-axis (K a  = 173.8 ± 2.2 GPa). Above 25 GPa the c/a ratio becomes pressure independent. No compressibility anomalies related to the structural transitions of H-atoms were observed in the pressure range to 30 GPa. The density reduction of hydrated subducting slab would be significant if the modal amount of phase D exceeds 10%.


Phase D Equation of state High pressure Synchrotron radiation 



We thank J. Bass, T. Shinmei and one anonymous reviewer for thorough reviews and corrections of the manuscript. We thank to S. Ghosh, H. Terasaki, K. Nishida and T. Sakamaki for assistance during experiments at ‘SPring-8’ and to T. Shinmei for data exchange prior to publication. This work was supported by the grants in Aid for Scientific Researches from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 14102009 and 16075202), to EO and Vacate B grant from Japan Society for Promotion of Science (No. 17740344) to KL. This work was conducted under the Spring-8 proposal No 2005A0772-ND2b-np and is a part of the 21st Century Center-of-Excellence program ‘Advanced Science and Technology Center for the Dynamic Earth’ at Tohoku University.


  1. Anderson OL, Issak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543CrossRefGoogle Scholar
  2. Crichton WA, Ross NL (2000a) Single-crystal equation of state measurements on Mg end members of the B-group minerals. In: Manghnani MN, Nellis WJ, Nicol MF (eds) Science and technology of high pressure. Proceeding of AIRAPT-17. University Press, Hyderabad, India, pp 587–590Google Scholar
  3. Crichton WA, Ross NL (2000b) Equation of state of phase E. Mineral Mag 64:561–567CrossRefGoogle Scholar
  4. Crichton WA, Ross NL (2002) Equation of state of dense hydrous magnesium silicate phase A, Mg7Si2O8(OH)6. Am Mineral 87:333–338Google Scholar
  5. Crichton WA, Ross NL, Gasparik T (1999) Equation of state of magnesium silicates anhydrous B and superhydrous B. Phys Chem Miner 26:570–575CrossRefGoogle Scholar
  6. Fei Y, Mao HK (1993) Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. J Geophys Res 98:11875–11884Google Scholar
  7. Fiquet G, Dewaele A, Andrault D, Kunz M, LeBihan T (2000) Thermoelastic properties and crystal structure of MgSiO3 perovkite at lower mantle pressure and temperature conditions. Geophys Res Lett 27:21–24CrossRefGoogle Scholar
  8. Frost DJ (1999) The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation: a tribute to Boyd, F.R. Geochem Soc Special Publ 6:283–296Google Scholar
  9. Frost DJ, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474CrossRefGoogle Scholar
  10. Frost DJ, Fei Y (1999) Static compression of the hydrous magnesium silicate phase D to 30 GPa at room temperature. Phys Chem Miner 26:415–418CrossRefGoogle Scholar
  11. Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893CrossRefGoogle Scholar
  12. Hirose K, Fei Y, Ono S, Yagi T, Funakoshi K (2001) In situ measurements of the phase transition boundary in Mg3Al2Si3O12: implications for the nature of the seismic discontinuities in the Earth’s mantle. Earth Planet Sci Lett 184:567–573CrossRefGoogle Scholar
  13. Inoue T, Ueda T, Higo Y, Yamada A, Irifune T, Funakoshi K (2006) High pressure and high temperature stability and the equation of state of superhydrous phase B. In: Jacobsen SD, Van der Lee S (eds) Earth’s deep water cycle, AGU Geophys Monogr, Vol 168, Washington DC, pp 147–157Google Scholar
  14. Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25:203–206CrossRefGoogle Scholar
  15. Jacobsen SD, Smyth JR, Spetzler H, Holl CM, Frost DJ (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys Earth Planet Inter 143–144:47–56CrossRefGoogle Scholar
  16. Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312CrossRefGoogle Scholar
  17. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res 109:B02209. DOI 10.1029/2003JB002438Google Scholar
  18. Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143–144:387–395CrossRefGoogle Scholar
  19. Kudoh Y, Nagase T, Mizohata H, Ohtani E, Sasaki S, Tanaka M (1997) Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050°C. Geophys Res Lett 24:1051–1054CrossRefGoogle Scholar
  20. Li B, Liebermann RC, Weidner DJ (1998) Elastic moduli of wadsleyite (β-Mg2SiO4) to 7 GPa and 873 K. Science 281:675–677CrossRefGoogle Scholar
  21. Litasov KD, Ohtani E (2002) Phase relations and melt compositions in CMAS pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127CrossRefGoogle Scholar
  22. Litasov KD, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite–H2O system up to 25 GPa. Phys Chem Miner 30:147–156CrossRefGoogle Scholar
  23. Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263CrossRefGoogle Scholar
  24. Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005a) In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication to the 660-km discontinuity. Earth Planet Sci Lett 238:311–328CrossRefGoogle Scholar
  25. Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005b) Wet subduction versus cold subduction. Geophys Res Lett 32:L13312. DOI 10.1029/2005GL022921Google Scholar
  26. Litasov KD, Ohtani E (2007) Effect of water on the phase relations in the Earth’s mantle and deep water cycle. In: Ohtani E (ed) Advances in high-pressure mineralogy, Geol Soc Amer Spec Paper vol 421. in pressGoogle Scholar
  27. Liu LG (1987) Effects of H2O on the phase behaviour of the forsterite–enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter 49:142–167CrossRefGoogle Scholar
  28. Liu LG, Okamoto K, Yang YJ, Chen CC, Lin CC (2004) Elasticity of single-crystal phase D (a dense hydrous magnesium silicate) by Brillouin spectroscopy. Solid State Comm 132:517–520CrossRefGoogle Scholar
  29. Meng Y, Weidner DJ, Gwanmesia GD, Liebermann RC, Vaughan MT, Wang Y, Lienenweber K, Pacalo RE, Yeganeh-Haeri A, Zhao Y (1993) In situ high P-T X-ray diffraction studies on three polymorphs (α,β, α) of Mg2SiO4. J Geophys Res 98:22199–22207CrossRefGoogle Scholar
  30. Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203CrossRefGoogle Scholar
  31. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269CrossRefGoogle Scholar
  32. Ohtani E, Mizobata H, Kudoh Y, Nagase T, Arashi H, Yurimoto H, Miyagi I (1997) A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett 24:1047–1050CrossRefGoogle Scholar
  33. Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–O2 and MgSiO3–H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544CrossRefGoogle Scholar
  34. Ohtani E, Shibata T, Kubo T, Kato T (1995) Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett 22:2553–2556CrossRefGoogle Scholar
  35. Ohtani E, Toma M, Kubo T, Kondo T, Kikegawa T (2003) In situ X-ray observation of decomposition of superhydrous phase B at high pressure and temperature. Geophys Res Lett 30. DOI 10.1029/2002GL015549Google Scholar
  36. Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117CrossRefGoogle Scholar
  37. Ono S, Kikegawa T, Iizuka T (2004) The equation of state of orthorhombic perovskite in a peridotitic mantle composition to 80 GPa: implications for chemical composition of the lower mantle. Phys Earth Planet Inter 145:9–17CrossRefGoogle Scholar
  38. Shieh SR, Mao HK, Hemley RJ, Ming LC (1998) Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett 159:13–23CrossRefGoogle Scholar
  39. Shieh SR, Mao HK, Hemley RJ, Ming LC (2000) In situ X-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth Planet Sci Lett 177:69–80CrossRefGoogle Scholar
  40. Shim SH, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739CrossRefGoogle Scholar
  41. Sinogeikin SV, Katsura T, Bass JD (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. J Geophys Res 103:20819–20825CrossRefGoogle Scholar
  42. Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806CrossRefGoogle Scholar
  43. Suzuki A, Ohtani E, Kondo T, Kuribayashi T (2001) Neutron diffraction study of hydrous phase G: hydrogen in the lower mantle hydrous silicate, phase G. Geophys Res Lett 28:3987–3990CrossRefGoogle Scholar
  44. Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T (2002) First principles calculation of a high-pressure hydrous phase, δ-AlOOH. Geophys Res Lett 29. DOI 10.1029/2002GL015417Google Scholar
  45. Tsuchiya J, Tsuchiya T, Tsuneyuki S (2005) First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am Mineral 90:44–49CrossRefGoogle Scholar
  46. Tsuchiya T (2003) First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108. DOI 10.1029/2003JB002446Google Scholar
  47. Xia X, Weidner DJ, Zhao H (1998) Equation of state of brucite: single-crystal Brillouin spectroscopy study and polycrystalline pressure–volume–temperature measurement. Am Mineral 83:68–74Google Scholar
  48. Yang H, Prewitt CT, Frost DJ (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. Am Mineral 82:651–654Google Scholar
  49. Yusa H, Inoue T (1997) Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high pressure X-ray diffraction. Geophys Res Lett 24:1831–1834CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Konstantin D. Litasov
    • 1
  • Eiji Ohtani
    • 1
  • Akio Suzuki
    • 1
  • Kenichi Funakoshi
    • 2
  1. 1.Institute of Mineralogy, Petrology and Economic Geology, Faculty of ScienceTohoku University, Aoba-kuSendaiJapan
  2. 2.SPring-8Japan Synchrotron Radiation Research Institute, KoutoHyogoJapan

Personalised recommendations