Physics and Chemistry of Minerals

, Volume 33, Issue 10, pp 655–666 | Cite as

DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates

  • Alfonso Hernández-Laguna
  • Elizabeth Escamilla-Roa
  • Vicente Timón
  • Martin T. Dove
  • C. Ignacio  Sainz-Díaz
Original Paper


Quantum mechanical calculations based on the density functional theory (DFT) are used to study the crystal structures of dioctahedral 2:1 phyllosilicates. The isomorphous cation substitution is investigated by exploring different substitutions of octahedral Al3+ by Mg2+ or Fe3+, tetrahedral substitution of Si4+ by Al3+, and different interlayer cations (IC) (Na+, K+, Ca2+, and Mg2+). Samples with different kinds of layer charges are studied: only tetrahedrally charged, only octahedrally charged, or mixed octahedral/tetrahedral charged. The effect of the relative arrangements of these substitutions on the lattice parameters and total energy is studied. The experimental observation of segregation tendency of Fe3+ and dispersion tendency of Mg2+ in the octahedral sheet is reproduced and explained with reference to the relative energies of the octahedral cation arrangements. These energies are higher than those due to the IC/tetrahedral and IC/octahedral relative arrangements. The tetrahedral and octahedral substitutions that generate charged layers also tend to be dispersed. The octahedral cation exchange potentials change with the IC-charge/ionic radius value.


Cation Substitution Octahedral Sheet Interlayer Cation Tetrahedral Sheet Octahedral Cation 



Authors are thankful to E. Artacho, J. M. Soler, and O. Paz for their useful discussions about SIESTA, A. R. Oganov for his comments, exchange program Royal Society of United Kingdom/Consejo Superior de Investigaciones Científicas (CSIC) of Spain, the “Centro Técnico de Informática” of CSIC, “Centro de Supercomputación de Galicia” (CESGA), and the “Centro de Supercomputación de la Universidad de Granada” for allowing the use of its computational facilities. E. Escamilla-Roa is thankful to Agencia Española de Cooperación Internacional (AECI), University of Granada and the BTE2000-1146-CO2-01 grant for financial support. This work was supported by Spanish Ministerio de Educación y Ciencia (MEC) and European FEDER grants BTE2002-03838 and PPQ2004-04648 grants.


  1. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Linear-scaling ab-initio calculations for large and complex systems. Phys Stat Sol 215:809–817CrossRefGoogle Scholar
  2. Bachelet GB, Schluter M (1982) Relativistic norm-conserving pseudopotentials. Phys Rev B25:2103–2108Google Scholar
  3. Besson G, Drits VA, Daynyak LG, Smoliar BB (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Miner 22:465–478Google Scholar
  4. Bosenick A, Dove MT, Myers ER, Palin EJ, Sainz-Díaz CI, Guiton B, Warren MC, Craig MS, Redfern SAT (2001) Computational methods for the study of energies of cation distributions: applications to cation-ordering phase transitions and solid solutions. Mineral Mag 65:197–223CrossRefGoogle Scholar
  5. Cuadros J, Sainz-Díaz CI, Ramírez R, Hernández-Laguna A (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite–smectite by means of FT-IR, 27Al MAS NMR and Reverse Monte Carlo simulations. Am J Sci 299:289–308CrossRefGoogle Scholar
  6. Drits VA, Dianyak LG, Muller F, Besson G, Manceau A (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mösbauer and EXAFS spectroscopies. Clay Miner 32:153–179Google Scholar
  7. Giese RF Jr (1979) Hydroxyl orientations in 2:1 phillosilicates. Clays Clay Miner 27:213–223CrossRefGoogle Scholar
  8. Güven N (1988) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in Mineralogy, vol. 19. Mineralogical Society of America, Washington, p 497–561Google Scholar
  9. Herrero CP, Sanz J (1991) Short-range order of the Si, Al distribution in layer silicates. J Phys Chem Solids 52:1129–1135CrossRefGoogle Scholar
  10. Herrero CP, Gregorkiewitz M, Sanz J, Serratosa JM (1987) 29Si MAS–NMR spectroscopy of mica-type silicates: observed and predicted distribution of tetrahedral Al–Si. Phys Chem Miner 15:84–90CrossRefGoogle Scholar
  11. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  12. Krauskopf KB (1991) Radioactive waste disposal and geology. Chapman and HallGoogle Scholar
  13. Louie SG, Froyen S, Cohen ML (1982) Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys Rev B26:1738–1742Google Scholar
  14. Meunier A (2005) Clays. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Morris HD, Bank S, Ellis PD (1990) 27Al NMR spectroscopy of iron-bearing montmorillonite clays. J Phys Chem 94:3121–3129CrossRefGoogle Scholar
  16. Muller F, Besson G, Manceau A, Drits VA (1997) Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux. Phys Chem Miner 24:159–166CrossRefGoogle Scholar
  17. Palin EJ, Dove MT, Redfern SAT, Bosenick A, Sainz-Díaz CI, Warren MC (2001) Computational study of tetrahedral Al–Si ordering in muscovite. Phys Chem Miner 28:534–544CrossRefGoogle Scholar
  18. Palin EJ, Dove MT, Redfern SAT, Sainz-Díaz CI (2003) Computational study of tetrahedral Al–Si and octahedral Al–Mg ordering in phengite. Phys Chem Miner 30:293–304Google Scholar
  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  20. Rosso KM, Rustad JR, Bylaska EJ (2001) The exchange in muscovita interlayer: an ab inio treatment, Clays Clay Miner 49:500–513CrossRefGoogle Scholar
  21. Sainz-Díaz CI, Cuadros J, Hernández-Laguna A (2001a) Cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods. Phys Chem Miner 28:445–454CrossRefGoogle Scholar
  22. Sainz-Díaz CI, Hernández-Laguna A, Dove MT (2001b) Modelling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Phys Chem Miner 28:130–141CrossRefGoogle Scholar
  23. Sainz-Díaz CI, Timón V, Botella V, Artacho E, Hernández-Laguna A (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: effect of the octahedral cation distribution in pyrophyllite, illite and smectite. Am Miner 87:958–965Google Scholar
  24. Sainz-Díaz CI, Palin EJ, Hernández-Laguna A, Dove MT (2003a) Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations. Phys Chem Miner 30:382–392CrossRefGoogle Scholar
  25. Sainz-Díaz CI, Palin EJ, Dove MT, Hernández-Laguna A (2003b) Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites. Am Miner 88:1033–1045Google Scholar
  26. Sainz-Díaz CI, Escamilla-Roa E, Hernández-Laguna A (2005) Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates. Am Miner 90:1827–1834CrossRefGoogle Scholar
  27. Sato T, Watanabe T, Otsuka R (1992) Effects of layer charge, charge location and energy charge on expansion properties of dioctahedral smectites. Clays Clay Miner 40:103–113CrossRefGoogle Scholar
  28. Schroeder PA (1993) A chemical, XRD, and 27Al MAS NMR investigation of Miocene Gulf Coast shales with application to understanding illite-smectite crystal-chemistry. Clays Clay Miner 41:668–679CrossRefGoogle Scholar
  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767Google Scholar
  30. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Cond Mat 14:2745–2779CrossRefGoogle Scholar
  31. Troullier N, Martins JL (1991) Efficient pseudopotentials in spin-density-functional calculations. Phys Rev B43:1993–2006Google Scholar
  32. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193Google Scholar
  33. Velde B, Espitalié J (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12:103–110Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alfonso Hernández-Laguna
    • 1
  • Elizabeth Escamilla-Roa
    • 1
  • Vicente Timón
    • 1
  • Martin T. Dove
    • 2
  • C. Ignacio  Sainz-Díaz
    • 3
  1. 1.Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas (CSIC)/Universidad de GranadaGranadaSpain

Personalised recommendations