Physics and Chemistry of Minerals

, Volume 33, Issue 10, pp 655–666 | Cite as

DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates

  • Alfonso Hernández-Laguna
  • Elizabeth Escamilla-Roa
  • Vicente Timón
  • Martin T. Dove
  • C. Ignacio  Sainz-Díaz
Original Paper

Abstract

Quantum mechanical calculations based on the density functional theory (DFT) are used to study the crystal structures of dioctahedral 2:1 phyllosilicates. The isomorphous cation substitution is investigated by exploring different substitutions of octahedral Al3+ by Mg2+ or Fe3+, tetrahedral substitution of Si4+ by Al3+, and different interlayer cations (IC) (Na+, K+, Ca2+, and Mg2+). Samples with different kinds of layer charges are studied: only tetrahedrally charged, only octahedrally charged, or mixed octahedral/tetrahedral charged. The effect of the relative arrangements of these substitutions on the lattice parameters and total energy is studied. The experimental observation of segregation tendency of Fe3+ and dispersion tendency of Mg2+ in the octahedral sheet is reproduced and explained with reference to the relative energies of the octahedral cation arrangements. These energies are higher than those due to the IC/tetrahedral and IC/octahedral relative arrangements. The tetrahedral and octahedral substitutions that generate charged layers also tend to be dispersed. The octahedral cation exchange potentials change with the IC-charge/ionic radius value.

References

  1. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Linear-scaling ab-initio calculations for large and complex systems. Phys Stat Sol 215:809–817CrossRefGoogle Scholar
  2. Bachelet GB, Schluter M (1982) Relativistic norm-conserving pseudopotentials. Phys Rev B25:2103–2108Google Scholar
  3. Besson G, Drits VA, Daynyak LG, Smoliar BB (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data. Clay Miner 22:465–478Google Scholar
  4. Bosenick A, Dove MT, Myers ER, Palin EJ, Sainz-Díaz CI, Guiton B, Warren MC, Craig MS, Redfern SAT (2001) Computational methods for the study of energies of cation distributions: applications to cation-ordering phase transitions and solid solutions. Mineral Mag 65:197–223CrossRefGoogle Scholar
  5. Cuadros J, Sainz-Díaz CI, Ramírez R, Hernández-Laguna A (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite–smectite by means of FT-IR, 27Al MAS NMR and Reverse Monte Carlo simulations. Am J Sci 299:289–308CrossRefGoogle Scholar
  6. Drits VA, Dianyak LG, Muller F, Besson G, Manceau A (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mösbauer and EXAFS spectroscopies. Clay Miner 32:153–179Google Scholar
  7. Giese RF Jr (1979) Hydroxyl orientations in 2:1 phillosilicates. Clays Clay Miner 27:213–223CrossRefGoogle Scholar
  8. Güven N (1988) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in Mineralogy, vol. 19. Mineralogical Society of America, Washington, p 497–561Google Scholar
  9. Herrero CP, Sanz J (1991) Short-range order of the Si, Al distribution in layer silicates. J Phys Chem Solids 52:1129–1135CrossRefGoogle Scholar
  10. Herrero CP, Gregorkiewitz M, Sanz J, Serratosa JM (1987) 29Si MAS–NMR spectroscopy of mica-type silicates: observed and predicted distribution of tetrahedral Al–Si. Phys Chem Miner 15:84–90CrossRefGoogle Scholar
  11. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  12. Krauskopf KB (1991) Radioactive waste disposal and geology. Chapman and HallGoogle Scholar
  13. Louie SG, Froyen S, Cohen ML (1982) Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys Rev B26:1738–1742Google Scholar
  14. Meunier A (2005) Clays. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Morris HD, Bank S, Ellis PD (1990) 27Al NMR spectroscopy of iron-bearing montmorillonite clays. J Phys Chem 94:3121–3129CrossRefGoogle Scholar
  16. Muller F, Besson G, Manceau A, Drits VA (1997) Distribution of isomorphous cations within octahedral sheets in montmorillonite from Camp-Bertaux. Phys Chem Miner 24:159–166CrossRefGoogle Scholar
  17. Palin EJ, Dove MT, Redfern SAT, Bosenick A, Sainz-Díaz CI, Warren MC (2001) Computational study of tetrahedral Al–Si ordering in muscovite. Phys Chem Miner 28:534–544CrossRefGoogle Scholar
  18. Palin EJ, Dove MT, Redfern SAT, Sainz-Díaz CI (2003) Computational study of tetrahedral Al–Si and octahedral Al–Mg ordering in phengite. Phys Chem Miner 30:293–304Google Scholar
  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  20. Rosso KM, Rustad JR, Bylaska EJ (2001) The exchange in muscovita interlayer: an ab inio treatment, Clays Clay Miner 49:500–513CrossRefGoogle Scholar
  21. Sainz-Díaz CI, Cuadros J, Hernández-Laguna A (2001a) Cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carlo methods. Phys Chem Miner 28:445–454CrossRefGoogle Scholar
  22. Sainz-Díaz CI, Hernández-Laguna A, Dove MT (2001b) Modelling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials. Phys Chem Miner 28:130–141CrossRefGoogle Scholar
  23. Sainz-Díaz CI, Timón V, Botella V, Artacho E, Hernández-Laguna A (2002) Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: effect of the octahedral cation distribution in pyrophyllite, illite and smectite. Am Miner 87:958–965Google Scholar
  24. Sainz-Díaz CI, Palin EJ, Hernández-Laguna A, Dove MT (2003a) Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations. Phys Chem Miner 30:382–392CrossRefGoogle Scholar
  25. Sainz-Díaz CI, Palin EJ, Dove MT, Hernández-Laguna A (2003b) Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites. Am Miner 88:1033–1045Google Scholar
  26. Sainz-Díaz CI, Escamilla-Roa E, Hernández-Laguna A (2005) Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates. Am Miner 90:1827–1834CrossRefGoogle Scholar
  27. Sato T, Watanabe T, Otsuka R (1992) Effects of layer charge, charge location and energy charge on expansion properties of dioctahedral smectites. Clays Clay Miner 40:103–113CrossRefGoogle Scholar
  28. Schroeder PA (1993) A chemical, XRD, and 27Al MAS NMR investigation of Miocene Gulf Coast shales with application to understanding illite-smectite crystal-chemistry. Clays Clay Miner 41:668–679CrossRefGoogle Scholar
  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767Google Scholar
  30. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Cond Mat 14:2745–2779CrossRefGoogle Scholar
  31. Troullier N, Martins JL (1991) Efficient pseudopotentials in spin-density-functional calculations. Phys Rev B43:1993–2006Google Scholar
  32. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193Google Scholar
  33. Velde B, Espitalié J (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12:103–110Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alfonso Hernández-Laguna
    • 1
  • Elizabeth Escamilla-Roa
    • 1
  • Vicente Timón
    • 1
  • Martin T. Dove
    • 2
  • C. Ignacio  Sainz-Díaz
    • 3
  1. 1.Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.Instituto Andaluz de Ciencias de la TierraConsejo Superior de Investigaciones Científicas (CSIC)/Universidad de GranadaGranadaSpain

Personalised recommendations