Physics and Chemistry of Minerals

, Volume 33, Issue 6, pp 394–402 | Cite as

TEM characterization of dislocations and slip systems in stishovite deformed at 14 GPa, 1,300°C in the multianvil apparatus

Original Paper

Abstract

Transmission electron microscopy (TEM) has been used to investigate deformation microstructures of synthetic stishovite specimens deformed at 14 GPa, 1,300°C. Geometrical characteristics of numerous dislocations have been characterized by dislocation contrast and stereographic analyses in order to identify the easy slip systems of stishovite. TEM data allowed us to characterize the following slip systems: 〈100〉{001}, 〈100〉{010}, 〈100〉{021}, [001]{100}, [001]{110}, [001]{210} and \(\langle 110\rangle \{1\bar{1}0\}.\) Observation of sub-grain boundaries and scalloped edge dislocations suggest that climb has been activated in the specimens.

Keywords

Stishovite Dislocation Plasticity Confining pressure Twinning 

References

  1. Aoudjehane HC, Jambon A, Reynard B, Blanc P (2005) Silica as a shock index in shergottites: a cathodoluminescence study. Meteor Planet Sci 40(7):967–979CrossRefGoogle Scholar
  2. Ashbee KHG, Smallman RE (1963) The plastic deformation of titanium dioxide single crystals. Proc R Soc A 274:195–205CrossRefGoogle Scholar
  3. Beck P, Gillet P, Gautron L, Daniel I, EI Goresy A (2004) A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites. Earth Planet Sci Lett 219(1–2):1–12CrossRefGoogle Scholar
  4. Blanchin MG, Fontaine G, Kubin LP (1980) Dynamic strain aging in stoichiometric rutile single crystals. Philos Mag A 41:261–280CrossRefGoogle Scholar
  5. Chao ECT, Littler J (1963) Additional evidence for the impact origin of the Ries basin, Bavaria, Germany. Geol Soc Am Abstract, 127Google Scholar
  6. Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J Geophys Res 67:419–421CrossRefGoogle Scholar
  7. Cordier P, Rubie DC (2001) Plastic deformation under extreme pressure using a multi-anvil apparatus. Mat Sci Eng A 309:38–43CrossRefGoogle Scholar
  8. Cordier P, Sharp TG (1998) Characterization of dislocations in stishovite by large angle convergent beam electron diffraction. Phys Chem Miner 25:548–555CrossRefGoogle Scholar
  9. Cordier P, Mainprice D, Mosenfelder JL (2004) Mechanical instability near the stishovite-CaCl2 phase transition: implications for crystal preferred orientations and seismic properties. Eur J Mineral 16:387–399CrossRefGoogle Scholar
  10. Cordier P, Couvy H, Merkel S, Weidner D (2005) Plastic deformation of minerals at high pressure: experimental techniques. In: Miletich R (ed) Mineral behaviour at extreme conditions. EMU Notes in Mineralogy, vol 7, pp 1–42Google Scholar
  11. Couvy H, Frost D, Heidelbach F, Nyilas K, Ungár T, Mackwell S, Cordier P (2004) Shear deformation experiments of forsterite at 11 GPa −1400°C in the multianvil apparatus. Eur J Mineral 16:877–889CrossRefGoogle Scholar
  12. Douin J, Veyssiére P, Beauchamp P (1986) Dislocation line stability in Ni3Al. Philos Mag A 54:375–393CrossRefGoogle Scholar
  13. EI Goresy A, Dubrovinsky L, Sharp TG, Chen M (2004) Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: their nature, petrographic settings versus theoretical predictions and relevance to Earth's mantle. J Phys Chem Solids 65:1597–1608CrossRefGoogle Scholar
  14. Ham RK (1961) The determination of dislocation densities in thin films. Philos Mag 6:1183–1184CrossRefGoogle Scholar
  15. Langenhorst F, Poirier JP (2000) “Eclogitic” minerals in a shocked basaltic meteorite. Earth Planet Sci Lett 176:259–265CrossRefGoogle Scholar
  16. Mainprice D, Barruol G, Ben Ismaïl W (2000) Earth deep interior: mineral physics and tomography from the atomic scale to the global scale. In: Karato SI (ed) Geophysical Monograph American Geophysical Union, Washington, pp 237–264Google Scholar
  17. Mosenfelder JL (2000) Pressure dependence of hydroxyl solubility in coesite. Phys Chem Miner 27:610–617CrossRefGoogle Scholar
  18. Péter A, Fries E, Jansky J, Castaing J (1986) Dislocations in paratellurite TeO2: elastic energies and plastic deformation. Rev Phys Appl 21:289–298Google Scholar
  19. Ringwood AE (1991) Phase transitions and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110CrossRefGoogle Scholar
  20. Ross N, Shu J-F, Hazen RM (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747Google Scholar
  21. Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J Geophys Res 66:3371–3378CrossRefGoogle Scholar
  22. Sinclair W, Ringwood AE (1978) Single crystal analysis of the structure of stishovite. Nature 272:714–715CrossRefGoogle Scholar
  23. Stishov SM, Popova SV (1961) New dense polymorphic modification of silica. Geochemistry 10:923–926Google Scholar
  24. Thurel E, Cordier P (2003) Plastic deformation of wadsleyite: I High-pressure deformation in compression. Phys Chem Miner 30:256–266Google Scholar
  25. Thurel E, Cordier P, Frost D, Karato S (2003a) Plastic deformation of wadsleyite: II High-pressure deformation in shear. Phys Chem Miner 30:267–270Google Scholar
  26. Thurel E, Douin J, Cordier P (2003b) Plastic deformation of wadsleyite: III. Interpretation of dislocations and slip systems. Phys Chem Miner 30:271–279Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de Structure et Propriétés de l’Etat Solide, UMR CNRS 8008 - Bat C6Université des Sciences et Technologies de LilleVilleneuve d’Ascq CedexFrance
  2. 2.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  3. 3.Laboratoire TECSEN, UMR 6122Université Aix-Marseille IIIMarseille Cedex 20France

Personalised recommendations