Physics and Chemistry of Minerals

, Volume 33, Issue 6, pp 426–434 | Cite as

Neutron irradiation and post-irradiation annealing of rutile (TiO2−x): effect on hydrogen incorporation and optical absorption

Original Paper


Neutron irradiation and post-irradiation annealing under oxidising and reducing conditions have been used to investigate H incorporation in, and the optical properties of, reduced (TiO2−x) rutile. Optical absorption in rutile is mainly due to a Ti3+ Ti4+ intervalence charge transfer effect. The main mechanism for H incorporation in rutile involves interstitial H not coupled to other defects, which has important implications for the rate of H diffusion, and possibly also on the electrical properties of rutile. Additional minor OH absorption bands in IR spectra indicate that a small amount of interstitial H is coupled to defects such as Ti3+ on the main octahedral site, and indicates that more than one H incorporation mechanism may operate. Concentration of oxygen vacancies has a controlling influence on the H affinity of rutile.


Hydrogen Rutile Spectroscopy Neutron irradiation Radiation defects 


  1. Aono M, Hasiguti R (1993) Interaction and ordering of lattice defects in oxygen-deficient rutile TiO2−x. Phys Rev B 48(17):12406–12414CrossRefGoogle Scholar
  2. van der Berg A, Gora L, Jansen J, Maschmeyer T (2003) Improvement of zeolite NaA nucleation sites on (001) rutile by means of UV radiation. Microporous Mesoporous Materials 66:303–309CrossRefGoogle Scholar
  3. Bromiley GD, Keppler H (2004) An experimental investigation of hydroxyl solubility in jadeite and Na-rich pyroxenes. Contrib Mineral Petrol 147:189–200CrossRefGoogle Scholar
  4. Bromiley GD, Hilaret N (2005) An investigation of hydrogen and minor element incorporation in synthetic rutile. Mineral Mag 69(3):345–358CrossRefGoogle Scholar
  5. Bromiley GD, Hilaret N, McCammon C (2004a) Solubility of hydrogen and ferric iron in rutile and TiO2 (II): Implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle. Geophys Res Lett 31:L04610CrossRefGoogle Scholar
  6. Bromiley GD, Keppler H, McCammon C, Bromiley F, Jacobsen S (2004b) Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am Mineral 89:941–949Google Scholar
  7. Buck EC (1995) The effects of electron irradiation of rutile. Rad Effects Defects Solids 133(2):141–152CrossRefGoogle Scholar
  8. Catlow C, James R, Mackrodt W, Stewart R (1982) Defect energies in α-Al2O3 and rutile TiO2. Phys Rev B 25(2):1006–1026CrossRefGoogle Scholar
  9. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(4–5):53–229CrossRefGoogle Scholar
  10. Gonzalez R, Chen Y (2002) Transport of hydrogenic species in crystalline oxides: radiation and electric-field-enhanced diffusion. J Phys Condensed Matter 14(45):R1143–R1173CrossRefGoogle Scholar
  11. Hammer V, Beran A (1991) Variations in the OH concentrations of rutile from different geological environments. Mineral Petrol 45:1–9CrossRefGoogle Scholar
  12. Henderson M (1999) A surface perspective on self-diffusion in rutile TiO2. Surf Sci 419:174–187CrossRefGoogle Scholar
  13. Kappers LO (1978) Point defects in particle-irradiated single crystals of tetragonal GeO2. Phys Rev B 17:4199–4206CrossRefGoogle Scholar
  14. Katayama I, Hirose K, Yurimoto H, Nakashima S (2003) Water solubility in majoritic garnet in subducting oceanic crust. Geophys Res Lett 30(22):2155CrossRefGoogle Scholar
  15. Khomenko V, Langer K, Rager H, Fett A (1998) Electronic absorption by Ti3+ ions and electronic delocalization in synthetic blue rutile. Phys Chem Mineral 25:338–346CrossRefGoogle Scholar
  16. Kingsbury PW, Ohlsen W, Johnson OW (1968) Defects in rutile III. Diffusion of interstitial ions. Phy Rev B 175:1099–1101CrossRefGoogle Scholar
  17. Kohn S, Brooker R, Frost D, Slesinger A, Wood B (2002) Ordering of hydroxyl defects in hydrous wadsleyite (beta-Mg2SiO4). Am Mineral 87(2–3):293–301Google Scholar
  18. Koudriachova M, de Leeuw S, Harrison N (2004) First-principles study of H intercalation in rutile TiO2. Phys Rev B 70:165421CrossRefGoogle Scholar
  19. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. In: Seitz F, Turnball D (eds) Solid state physics: advances and applications, vol 3. Academic, New York, pp 307–435Google Scholar
  20. Lager G, von Dreele R (1996) Neutron powder diffraction study of hydrogarnet to 9.0 GPa. Am Mineral 81(9–10):1097–1104Google Scholar
  21. Lehman C (1977) Interaction of radiation with solids and elementary defect production. In: Defects in crystalline solids, vol 10. North Holland Publishing Company, Amsterdam, 341 ppGoogle Scholar
  22. Lu T-C, Wu S-Y, Lin L-B, Zheng W-C (2001) Defects in the reduced rutile single crystal. Physica B 304:147–151CrossRefGoogle Scholar
  23. Lu T-C, Lin L-B, Wu S-Y, Chen J, Zhang Y-Y (2002a) Influence of neutron irradiation and its post-annealing on optical absorption of rutile. Nucl Instrum Methods Phys Res B 191:236–240CrossRefGoogle Scholar
  24. Lu T-C, Lin L-B, Wu S-Y, Xu X-C, Cheng G (2002b) Influence of proton implantation on optical absorption of rutile. Surf Coatings Technol 158–159:431–435CrossRefGoogle Scholar
  25. Moore D, Cherniak D, Watson E (1998) Oxygen diffusion in rutile from 750 to 1,000°C and 0.1 to 1,000 MPa. Am Mineral 83:700–711Google Scholar
  26. Schmidt BC, Holtz FM, Bény J-M (1998) Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy. J Non-Crystalline Solids 240:91–103CrossRefGoogle Scholar
  27. Swope R, Smyth J, Larson A (1995) H in rutile compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Am Mineral 80:448–453Google Scholar
  28. Thomas BS, Marks NA, Corrales LR, Devanathan R (2005) Threshold displacement energies in rutile TiO2: a molecular dynamics simulation study. Nucl Instrum Methods Phys Res B 239(3):191–201CrossRefGoogle Scholar
  29. Traylor J, Smith H, Nicklow R, Wilkinson M (1971) Lattice dynamics of rutile. Phys Rev B 3(10):3457–3472CrossRefGoogle Scholar
  30. Zapunnyy S, Sobolev A, Bogdanov A, Slutsky A, Dmitriev L, Kunin L (1989) An apparatus for high-temperature optical research with controlled oxygen fugacity. Geochim Int 26(2):120–128Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Geoffrey David Bromiley
    • 1
    • 2
  • Andrei A. Shiryaev
    • 3
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.A.V. Shubnikov Institute of Crystallography RASMoscowRussia

Personalised recommendations