Physics and Chemistry of Minerals

, Volume 32, Issue 3, pp 165–174 | Cite as

Mineralogy, 57Fe Mössbauer spectra and magnetization of chalcolithic pottery

  • R. Keller
  • L. Masch
  • J. Pohl
  • E. SchmidbauerEmail author
Original papers


Three chalcolithic pottery sherds, paint removed from the surface of each sherd, and an unheated red pigment (Tell-Halaf culture, Turkey) were analysed within the frame of archaeometric studies using mineralogical methods, 57Fe Mössbauer spectroscopy, magnetization and rotational hysteresis data. From mineralogical results, the individual minerals forming the cores of the sherds were determined. It was found that the sherds are lime-rich. High temperature X-ray analysis on comparable Ca-rich material showed that the established composition is consistent with a firing temperature of 750-950°C. Apart from the pigment, each Mössbauer spectrum of Fe-bearing components consists of dominating paramagnetic doublets, arising mostly from silicate phases, and of a six-line pattern with reduced intensity, due to ferri- and/or antiferromagnetic Fe-oxide phases. For three samples, an Fe3+ silicate component of the spectra is clearly dominating, which points to oxidizing conditions during firing. For the others Fe2+ and Fe3+ components occur in about equal intensities. For the pigment, the magnetic sextet is of similar intensity to the Fe3+ silicate component. From magnetic analysis of ferrimagnetic phases it follows that a low percentage of particles of solid solutions γ-Fe2O3 – Fe3O4 exist, probably in part ≤0.1 μm in diameter. The ferrimagnetic particles of at least one paint are probably covered by a thin layer of hematite as found from rotational hysteresis data. An attempt is made to draw conclusions from the experimental results, regarding the firing conditions of the sherds and paints.


X-ray diffraction 57Fe Mössbauer spectroscopy Magnetization Ceramic sherds 



The authors would like to thank A.v. Wickede for providing us with the ceramic materials. They are indebted to C. Speiser for mineralogical investigations. This work was supported by a grant from the Deutsche Forschungsgemeinschaft.


  1. Aharoni A (1992) Relaxation processes in small particles. In: Dormann JL, Fiorani D (eds) Magnetic properties of fine particles. North Holland, Amsterdam, pp 1–11Google Scholar
  2. Annersten H, Hafner SS (1973) Vacancy distribution in synthetic spinels of the series Fe3O4 – γ-Fe2O3. Z Kristallogr 137:321–340Google Scholar
  3. Araújo JH, da Silva NF, Acchar W, Gomes UU (2004) Thermal decomposition of illite. Mater Res 7:359–361Google Scholar
  4. Bozorth RM (1951) Ferromagnetism. Van Nostrand Company, New York, p 968Google Scholar
  5. Brabers VAM (1995) Progress in spinel ferrite research. In: Buschow KHJ (ed) Handbook of magnetic materials, vol. 8. North Holland, Amsterdam, pp 189–324Google Scholar
  6. Cui Y, Verosub KL (1995) A mineral magnetic study of some pottery samples: possible implications for sample studies selected in archaeointensity. Phys Earth Planet Int 91:261-271CrossRefGoogle Scholar
  7. De Grave E, Bowen LH, Weed SB (1982) Mössbauer study of aluminum-substituted hematites. J Magn Magn Mater 27:98-108CrossRefGoogle Scholar
  8. Deriu A (1982) Mössbauer study of ancient pottery from the Greek colony of Pithekoussai. In: Proceedings of International Conference on Applied Mössbauer effect, Indian National Science Academy, Neu Dehli, pp 838–840Google Scholar
  9. Dormann JL, Viart N, Rehspringer JL, Ezzir A, Niznansky D (1998) Magnetic properties of Fe2O3 particles prepared by sol–gel method. Hyperfine Inter 112:89–92CrossRefGoogle Scholar
  10. Dunlop DJ (1971) Magnetic properties of fine-particle hematite. Ann Géophys 27:269–293Google Scholar
  11. Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge, pp 573Google Scholar
  12. Fearon M, Chantrell RW, Wohlfarth EP (1990) A theoretical study of interaction effects on the remanence curves of particulate dispersions. J Magn Magn Mater 86:197–206CrossRefGoogle Scholar
  13. Fysh SA, Clark PE (1982) Aluminous hematite: a Mössbauer study. Phys Chem Miner 8:257–267CrossRefGoogle Scholar
  14. Gaunt P, Hadjipanayis G, Ng D (1986) Remanence relationships and domain wall pinning in ferromagnets. J Magn Magn Mater 54–57:841–842Google Scholar
  15. Heimann RB, Maggetti M (1981) Experiments on simulated burial of calcareous Terra Siggilata. In: British Museum Occasional Papers 19, London, pp 163–177Google Scholar
  16. Henkel O (1964) Remanenzverhalten und Wechselwirkung in hartmagnetischen Teilchenkollektiven. Phys Stat Sol 7:919–929Google Scholar
  17. Jacobs IS, Luborsky FE (1957) Magnetic anisotropy and rotational hysteresis in elongated fine-particle magnets. J Appl Phys 28:467–473CrossRefGoogle Scholar
  18. Jordanova N, Kovacheva M, Hedley I, Kostadinova M (2003) On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies. Geophys J Int 153:146–159CrossRefGoogle Scholar
  19. Kündig W, Bömmel H, Constabaris G, Lindquist RH (1969) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys Rev 143:327–333Google Scholar
  20. Keller R, Schmidbauer E (1996) Magnetic properties and rotational hysteresis losses of oxidized 250 nm Fe3O4 particles. J Magn Magn Mater 162:85–90CrossRefGoogle Scholar
  21. Kostikas A, Simopoulos A, Gangas NH (1976) Analyses of archaeological artifacts. In: Cohen RL (ed) Applications of Mössbauer spectroscopy, vol 1. Academic, New York, pp 241–261Google Scholar
  22. Maggetti M (1981) Composition of Roman pottery from Lousonna (Switzerland). In: Hughes MJ (ed) Studies in ancient ceramics. British Museum Research Laboratory Occasional Paper No. 19, London, pp 33–49Google Scholar
  23. Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105:904–913CrossRefGoogle Scholar
  24. Morris RV, Schulze DG, Lauer HV, Agresti DG, Shelfer TD (1992) Reflectivity (visible and near IR), Mössbauer, static magnetic, and X-ray diffraction properties of aluminum-substituted hematites. J Geophys Res 97:10257–10266Google Scholar
  25. Murad E, Johnson JH (1987) Iron oxides and oxyhydroxides. In: Long GL (ed) Mössbauer spectroscopy applied to inorganic chemistry, vol 2. Plenum Publishing Corporation, New York, pp 507–582Google Scholar
  26. Murad E, Schwertmann U (1986) Influence of Al substitution and crystal size on the room-temperature Mössbauer spectrum of hematite. Clay Clay Miner 34:1–6Google Scholar
  27. O′Reilly W (1984) Rock and mineral magnetism. Blackie & Sons Limited, Glasgow, pp 220Google Scholar
  28. Özdemir Ö, Banerjee SK (1984) High temperature stability of maghemite (γ-Fe2O3). Geophys Res Lett 11:161–164Google Scholar
  29. Pollard RJ (1988) On the Mössbauer spectrum of γ-Fe2O3. Hyperfine Inter 41:509–512Google Scholar
  30. Schnepp E, Pucher R (1998) Preliminary archaeomagnetic results from a floor sequence of a bread kiln in Lübeck (Germany). Studia Geoph Geod 42:1–11CrossRefGoogle Scholar
  31. Shimada I, Häusler W, Hutzelmann T, Wagner U (2003) Early pottery making in Northern Coastal Peru. Part I: Mössbauer study of clay. Hyperfine Inter 150:73–89CrossRefGoogle Scholar
  32. Soffel H, Schurr K (1990) Magnetic fraction studied on 2 experimental kilns. Geophys J Inter 102:551–562Google Scholar
  33. Spratt GWD, Bissell PR, Chantrell RW, Wohlfarth EP (1988) Static and dynamic experimental studies of particulate recording media. J Magn Magn Mater 75:309–318CrossRefGoogle Scholar
  34. Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. In: Developments in solid earth geophysics, vol 5. Elsevier, Amsterdam, pp 1–194Google Scholar
  35. Tenorio D, Jiménez-Reyes M, Cabral-Prieto A, Siles-Iotor, Flores-Ramírez H, Galván-Madrid JL (2000) Archaeometry of pre-Hispanic pottery from San Luis Potosi, México. Hyperfine Inter 128:381–396CrossRefGoogle Scholar
  36. Vandenberghe RE, Barrero CA, da Costa CM, Van San E, De Grave E (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyperfine Inter 126:247–259CrossRefGoogle Scholar
  37. Van der Kraan AM (1973) Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys Stat Sol (a) 18:215–226Google Scholar
  38. Wagner FE, Wagner U (2004) Mössbauer spectra of clays and ceramics. Hyperfine Inter 154:35–82CrossRefGoogle Scholar
  39. Wagner U, Gebhard R, Murad E, Shimada I, Wagner FE (1992) The role of small particles in the study of archaeological ceramics. In: Dormann JL, Fiorani D (eds) Magnetic properties of fine particles. North Holland, Amsterdam, pp 381–392Google Scholar
  40. Wagner U, Gebhard R, Murad E, Grosse G, Riederer G, Shimada I, Wagner FE (1997) Formative ceramics from the Andes and their production: a Mössbauer study. Hyperfine Inter 110:165-176CrossRefGoogle Scholar
  41. Weiner KL, Masch L, Klenk G (1992) Mineralogische Untersuchungen an späturukzeitlicher und frühbroncezeitlicher Keramik. In: Behm-Blancke MR (ed) Hassek Höyük: naturwissenschaftliche Untersuchungen und lithische Industrie, Istanbuler Forschungen, vol 38. Ernst Wasmuth Verlag, Tübingen, pp 86–100Google Scholar
  42. von Wickede A, Herbordt S (1988) Cav i Tarlasi. Istanbuler Mitteilungen 38:5–35Google Scholar
  43. Wohlfarth EP (1958) Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J Appl Phys 35:595–596CrossRefGoogle Scholar
  44. Yu Y, Dunlop DJ (2000) Archeomagnetism of Ontario potsherds from the last 2000 years. J Geophys Res 105:19419–19433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department für Geo- und UmweltwissenschaftenSektion Geophysik, Universität MünchenMünchenGermany
  2. 2.Department für Geo- und Umweltwissenschaften, Sektion Mineralogie, Petrologie und GeochemieUniversität MünchenMünchenGermany

Personalised recommendations