Physics and Chemistry of Minerals

, Volume 32, Issue 2, pp 126–131 | Cite as

Ammonium ion behaviour in feldspar: variable-temperature infrared and 2H NMR studies of synthetic buddingtonite, N(D,H)4AlSi3O8

  • M. Mookherjee
  • M. D. Welch
  • L. Le Pollès
  • S. A. T. Redfern
  • D. E. Harlov
Original papers


The behaviour of the ammonium ion in synthetic buddingtonite, N(D,H)4AlSi3O8, has been studied by infrared (IR) spectroscopy from 20 K to 298 K and by 2H NMR spectroscopy from 120 K to 298 K. IR spectra were collected from 500 to 3500 cm−1. Static 2H NMR spectra collected at 298 K and 120 K are very similar, consisting of a single sharp isotropic resonance, indicating complete averaging of quadrupolar interactions and implying that at these temperatures the ammonium ion is in rapid (<1 μs) randomised motion within the M-site cavity of the feldspar framework. NMR spectroscopy indicates that the splitting of the internal modes of the ammonium ion observed by IR spectroscopy is not due to “freezing in” of the ammonium ion. This observation rules out the formation of a preferred N–H...O hydrogen bond, with precession of the ion about it, as proposed by Kimball and Megaw (1978), because any N–H...O hydrogen bond must be very weak and transient in nature. Contraction of the cavity site upon cooling imposes a distortion upon the ammonium ion that affects vibrational modes. This distortion does not affect the motion of the ammonium ion as observed on the NMR time-scale.


Buddingtonite Ammonium 2H NMR spectroscopy Infrared spectroscopy 


  1. Beran A, Armstrong J, Rossman GR (1992) Infrared and electron microprobe analysis of ammonium ions in hyalophane feldspar. Eur J Mineral 4:847–850Google Scholar
  2. Duer MJ (2000) Solid-state NMR studies of molecular motion. Annu Rep NMR Spectrosc 43:1–58Google Scholar
  3. Harlov DE, Andrut M, Poter B (2001a) Characterization of tobelite (NH4)Al2[AlSi3O10](OH)2 and ND4-tobelite (ND4)Al2[AlSi3O10](OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra. Phys Chem Minerals 28:268–276Google Scholar
  4. Harlov DE, Andrut M, Poter B (2001b) Characterization of buddingtonite (NH4)[AlSi3O8] and ND4-buddingtonite (ND4)[AlSi3O8] using IR spectroscopy and Rietveld refinement of XRD spectra. Phys Chem Minerals 28:188–198Google Scholar
  5. Harlov DE, Andrut M, Poter B (2001c) Characterization of NH4-phlogopite (NH4)Mg3[AlSi3O10](OH)2 and ND4-phlogopite (ND4)Mg3[AlSi3O10](OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra. Phys Chem Minerals 28:77-86-276Google Scholar
  6. Harris RK (1983) Nuclear magnetic resonance spectroscopy. Longman Scientific and TechnicalGoogle Scholar
  7. Kimball MD, Megaw HD (1974) Interim report on the crystal structure of buddingtonite. In: Mackenzie WS and Zussman J (eds) The feldspars, proceedings of the NATO ASI on feldspars, chap I(6). Manchester University Press, Manchester, pp 81–86Google Scholar
  8. Kristensen JH, Farnan I (2001) Computational aspects of motional symmetry in nuclear resonance spectroscopy. Chem Phys 270:109–128Google Scholar
  9. Kristensen JH, Hoatson GL, Vold RL (1999) Effects of restricted rotational diffusion on 2H magic angle spinning nuclear magnetic resonance spectra. J Chem Phys 110:4533–4553Google Scholar
  10. Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H...O hydrogen bond lengths in minerals. Monatshefte für Chemie 120:1047–1059Google Scholar
  11. Likhacheva AY, Paukshtis EA, Seryotkin YV Shulgenko SG (2002) IR spectroscopic characterization of NH4-analcime. Phys Chem Minerals 29:617–623Google Scholar
  12. Mookherjee M, Redfern SAT, Zhang M, Harlov DE (2002a) Orientational order–disorder in synthetic ND4/NH4-phlogopite: a low-temperature infrared study. Eur J Mineral 14:1033–1039Google Scholar
  13. Mookherjee M, Redfern SAT, Zhang M, Harlov DE (2002b) Orientational order–disorder of N(D,H)4+ in tobelite. Am Mineralogist 87:1686–1691Google Scholar
  14. Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486Google Scholar
  15. Oxton IA, Knop O, Falk M (1975) Infrared spectra of the ammonium ion in crystal. I. Ammonium hexachloroplatinate (IV) and hexachlorotellurate (IV). Can J Chem 53:2675–2682Google Scholar
  16. Oxton IA, Knop O, Falk M (1976) Determination of the symmetry of ammonium ions in crystals from the infrared spectra of the isotopically dilute NH3D+ species. J Phys Chem 80:1212–1217Google Scholar
  17. Portsmouth RL, Duer MJ, Gladden LF (1995) 2H NMR studies of single-component adsorption in silicalite: a comparative strudy of benzene and p-xylene. J Chem Soc (Faraday Transact) 91:559–0567Google Scholar
  18. Stebbins JF (1988) NMR spectroscopy and dynamic processes in mineralogy and geochemistry. Mineral Soc Am Rev Mineral 18:405–430Google Scholar
  19. Voncken JHL, Konings RJM, Jansen JBH, Woensdregt CF (1988) Hydrothermally grown buddingtonite, an anhydrous ammonium feldspar (NH4AlSi3O8). Phys Chem Minerals 15:323–328Google Scholar
  20. Wagner EL, Hornig DF (1950) The vibrational spectra of molecules and complex ions in crystals III. Ammonium chloride and deutero-ammonium chloride. J Chem Phys 18:296–304CrossRefGoogle Scholar
  21. Yund RA (1983) Diffusion in feldspars. Mineral Soc Am Rev Mineral 2:203–222Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Mookherjee
    • 1
  • M. D. Welch
    • 1
    • 2
  • L. Le Pollès
    • 1
  • S. A. T. Redfern
    • 1
  • D. E. Harlov
    • 3
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Department of MineralogyNatural History MuseumLondonUK
  3. 3.GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations