Physics and Chemistry of Minerals

, Volume 33, Issue 2, pp 84–97 | Cite as

Texture development and elastic stresses in magnesiowűstite at high pressure

  • Caterina E. TommaseoEmail author
  • Jim Devine
  • Sébastien Merkel
  • Sergio Speziale
  • Hans-Rudolf Wenk
Original Paper


Cubic magnesiowűstite has been deformed in a diamond anvil cell at room temperature. We present results for (Mg0.4Fe0.6)O, (Mg0.25Fe0.75)O, and (Mg0.1Fe0.9)O up to 37, 16, and 18 GPa, respectively. The diffraction images, obtained with the radial diffraction technique, are analyzed using both single peak intensities and a Rietveld method. For all samples, we observe a [100] fiber texture but the texture strength decreases with increasing iron content. This texture pattern is consistent with {110}〈1-10〉 slip. The images were also analyzed for stress, elastic strains, and elastic anisotropy. In general, the stress measured in magnesiowűstite samples is lower than previously measured on MgO. The elastic anisotropy deduced from the X-ray measurements shows a broad agreement with models based on measurements with other techniques.


(Mg,Fe)O Texture DAC Synchrotron X-rays Deformation mechanisms Magnesiowűstite Elasticity 



C.E.T. thanks the DFG (TO257/3–1) for financial support. This work was supported by NSF and CDAC. We are appreciative for access to the facilities at APS and ALS. We acknowledge help by M. Kunz and L. Miyagi with the experiment and Ivan Lonardelli, Gloria Ischia, Ingwar Huensche, and Jenny Pehl with MAUD data analysis and fruitful discussions. Comments on the manuscript by reviewers were very helpful. We also thank R. Jeanloz for providing some of the samples used in the experiments.


  1. Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543CrossRefGoogle Scholar
  2. Andrault D (2001) Evaluation of (Mg,Fe) partitioning between silicate perovskite and magnesiowűstite up to 120 GPa and 2300 K. J Geophys Res 106:2079–2087CrossRefGoogle Scholar
  3. Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earths mantle: toward a deep lower mantle discontinuity. Science 300:789–791CrossRefPubMedGoogle Scholar
  4. Bonczar LJ, Graham EK (1982) The pressure and temperature dependence of the elastic properties of polycrystal magnesiowűstite. J Geophys Res 87:1061–1078CrossRefGoogle Scholar
  5. Bunge HJ (1982) Texture analysis in materials science. Butterworths, London, 593 ppGoogle Scholar
  6. Carter NL, Heard HC (1970) Temperature and rate-dependent deformation of halite. Am J Sci 269:193–249Google Scholar
  7. Cohen RE, Mazin II, Isaak DG (1997) Magnetic collapse in transition metal oxides at high pressure: implications for the Earth. Science 275:654–657CrossRefPubMedGoogle Scholar
  8. Davies GF (1974) Effective elastic moduli under hydrostatic stress I. Quasi harmonic theory. J Phys Chem Solids 35:1513–1520CrossRefGoogle Scholar
  9. Dubrovinsky LS, Dubrovinskaia NA, Saxena SK, Annersten H, Halenius E, Harryson H, Tutti F, Rekhi S, Le Bihan T (2000) Stability of ferropericlase in the lower mantle. Science 289:430–432CrossRefPubMedGoogle Scholar
  10. Dubrovinsky LS, Dubrovinskaia N, Annersten H, Halenius E, Harrison H (2001) Stability of (Mg0.5Fe0.5)O and (Mg0.8Fe0.2)O magnesiowűstites in the lower mantle. Eur J Mineral 13:857–861CrossRefGoogle Scholar
  11. Dubrovinsky LS, Dubrovinskaia N, Kantor I, McCammon C, Crichton W, Urusov V (2005) Decomposition of ferropericlase (Mg0.80Fe0.20)O at high pressures and temperatures. J Alloys Comp 390:41–45CrossRefGoogle Scholar
  12. Duffy TS, Shen G, Heinz DL, Shun J, Me Y, Mao HK (1999) Lattice strains in gold and rhenium under non-hydrostatic compression to 37 GPa. Phys Rev B 60:15063–15073CrossRefGoogle Scholar
  13. Hammersley AP (1998) FIT2D reference manual (European Synchrotron Radiation Facility, Grenoble, France), version 4.0Google Scholar
  14. Heidelbach F, Stretton I, Langenhorst F, Mackwell S (2003) Fabric evolution during high shear–strain deformation of magnesiowűstite. J Geophys Res B 108:2154CrossRefGoogle Scholar
  15. Ischia G, Wenk HR, Lutterotti L, Berberich (2005) Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images. J Appl Crystallogr 38:377–380CrossRefGoogle Scholar
  16. Jackson I, Khanna SK (1990) Elasticity, shear-mode softening and high-pressure polymorphism of wuestite (Fe1−xO). J Geophys Res 95:21671–21685CrossRefGoogle Scholar
  17. Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon C (2002) Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res 107(B2):1–14CrossRefGoogle Scholar
  18. Jacobsen SD, Spetzler HA, Reichmann HJ, Smyth JR (2004) Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O. Proc Natl Acad Sci USA 101:5867–5871CrossRefPubMedGoogle Scholar
  19. Karato SI (1998a) Seismic anisotropy in the deep mantle and the geometry of mantle convection. Pure Appl Geophys 151:565–587CrossRefGoogle Scholar
  20. Karato SI (1998b) Some remarks on the origin of seismic anisotropy in D′′ layer. Earth Planets Space 50:1019–1028Google Scholar
  21. Karki B, Stixrude L, Clark S, Warren M, Ackland G, Crain J (1997) Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures. Am Mineral 82:635–638Google Scholar
  22. Kavner A (2003) Elasticity and strength of hydrous ringwoodite at high pressure. Earth Planet Sci Lett 214:645–654CrossRefGoogle Scholar
  23. Kondo T, Ohtani E, Hirao E, Yagi T, Kikegawa T (2004) Phase transitions of (Mg,Fe)O at megabar pressures. Phys Earth Planet Interiors 143–144:201–213CrossRefGoogle Scholar
  24. Li L, Weidner DJ, Raterron P, Chen J, Vaughan MT (2004) Stress measurements of deforming olivine at high pressure. Phys Earth Planet Interiors 143–144: 357–367CrossRefGoogle Scholar
  25. Lin JF, Heinz DL, Mao HK, Hemley RJ, Devine JM, Li J, Shen G (2003) Stability of magnesiowűstite in earth’s lower mantle. Proc Natl Acad Sci 8:4405–4408CrossRefGoogle Scholar
  26. Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earths lower mantle. Nature 436:377–380CrossRefPubMedGoogle Scholar
  27. Lonardelli I, Wenk H-R, Lutterotti L, Goodwin M (2005) Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. J Synchroton Radiat 12:354–360CrossRefGoogle Scholar
  28. Luecke W, Kohlstedt DJ (1988) Kinetics of the internal oxidation of (Mg,Fe)O solid solutions. J Am Ceram Soc 71:189–196CrossRefGoogle Scholar
  29. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for materials analysis using diffraction. Int U Crystallogr Comm Powder Diffraction Newsletter 21:14–15Google Scholar
  30. Madi K, Forest S, Cordier P, Boussuge M (2005) Numerical study of creep in two-phase aggregates with a large rheology contrast: implications for the lower mantle. Earth Planet Sci Lett 237:223–238CrossRefGoogle Scholar
  31. Mao HK, Shu J, Fei Y, Hu J, Hemley RJ (1997) Multivariable dependence of Fe–Mg partitioning in the lower mantle. Science 278:2098–2100CrossRefPubMedGoogle Scholar
  32. Mao W, Shu J, Hu J, Hemley R, Mao HK (2002) Displacive transition in magnesiowűstite. J Phys Condens Matter 14:11349–11354CrossRefGoogle Scholar
  33. Matthies S, Vinel GW (1982) On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction. Phys Status Solidi 112:K111–K114CrossRefGoogle Scholar
  34. McCammon CA (1993) Effect of pressure on the composition of the lower mantle end member FexO. Science 259:66–68CrossRefGoogle Scholar
  35. Merkel S, Yagi T (2005) X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev Sci Instrum 76:046109CrossRefGoogle Scholar
  36. Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res 107:2271CrossRefGoogle Scholar
  37. Merkel S, Shu J, Gillet P, Mao HK, Hemley RJ (2005) X-ray diffraction study of the single crystal elastic moduli of e-Fe up to 30 GPa. J Geophys Res 110:B05201CrossRefGoogle Scholar
  38. Miranda CR, Scandolo S (2005) Computational materials science meets geophysics: dislocations and slip planes of MgO. Comput Phys Commun 169:24CrossRefGoogle Scholar
  39. Nye JF (1960) Physical properties of crystals. Clarendon, Oxford, 322 ppGoogle Scholar
  40. Pulliam GR (1963) Decorated dislocations in magnesia crystals. J Am Ceram Soc 46:202–206CrossRefGoogle Scholar
  41. Richet P, Mao HK, Bell PM (1989) Bulk moduli of magnesiowűstites from static compression measurements. J Geophys Res 94:3037–3045CrossRefGoogle Scholar
  42. Sherman DM (1988) In: Ghose S, Coey JMD, Salje E (eds) Structural and magnetic phase transitions in minerals. Springer, Berlin Heidelberg New York, pp 113–118Google Scholar
  43. Sherman DM (1991) The high-pressure electronic structure of magnesiowüstite (Mg,Fe)O: applications to the physics and chemistry of the lower mantle. J Geophys Res 96:14299–14312CrossRefGoogle Scholar
  44. Sherman DM, Jansen HJF (1995) First-principles predictions of the high-pressure phase transition and electronic structure of FeO: implications for the chemistry of the lower mantle and core. Geophys Res Lett 22:1001–1004CrossRefGoogle Scholar
  45. Singh AK, Balasingh C (1977) Uniaxial stress component in diamond anvil high-pressure X-ray cameras. J Appl Phys 48:5338CrossRefGoogle Scholar
  46. Singh AK, Kennedy GC (1974) Uniaxial stress component in tungsten carbide anvil high-pressure X-ray cameras. J Appl Phys 45:4686CrossRefGoogle Scholar
  47. Singh AK, Balasingh C, Mao HK, Hemley RJ, Shu J (1998) Analysis of lattice strains measured under non-hydrostatic pressure. J Appl Phys 83:7567–7575CrossRefGoogle Scholar
  48. Sinogeikin SV, Bass JD (2000) Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys Earth Planet Interiors 120:43–62CrossRefGoogle Scholar
  49. Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci (in press)Google Scholar
  50. Stretton I, Heidelbach F, Mackwell SJ, Langenhorst F (2001) Dislocation creep of magnesiowűstite (Mg0.8Fe0.2O). Earth Planet Sci Lett 194:229–240CrossRefGoogle Scholar
  51. Weidner DJ, Li L, Davis M, Chen J (2004) Effect of plasticity on elastic modulus measurements. Geophys Res Lett 31:1–4CrossRefGoogle Scholar
  52. Wenk HR, Canova GR, Molinari A, Mecking HH (1989) Texture development in halite: comparison of Taylor model and self-consistent theory. Acta Metall 37:2017–2029CrossRefGoogle Scholar
  53. Wenk HR, Matthies S, Donovan J, Chateigner D (1998) BEARTEX, a Windows-based program system for quantitative texture analysis. J Appl Crystallogr 31:262–269CrossRefGoogle Scholar
  54. Wentzcovitch RM, Karki BB, Karato S, Silvera CRSD (1998) High pressure elastic anisotropy of MgSiO3 and geophysical implications. Earth Planet Sci Lett 164:371–378CrossRefGoogle Scholar
  55. Yagi T, Suzuki T, Akimoto S (1985) Static compression of wüstite (Fe0.98O) to 128 GPa. J Geophys Res 90:8784–8788CrossRefGoogle Scholar
  56. Yamazaki D, Karato SI (2001) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am Mineral 86:385–391Google Scholar
  57. Yamazaki D, Karato SI (2002) Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Physics Earth Planet Interiors 131:251–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Caterina E. Tommaseo
    • 1
    Email author
  • Jim Devine
    • 2
  • Sébastien Merkel
    • 1
  • Sergio Speziale
    • 1
  • Hans-Rudolf Wenk
    • 1
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.University of Chicago, Geophysical ScienceChicagoUSA

Personalised recommendations