Physics and Chemistry of Minerals

, Volume 32, Issue 7, pp 493–503 | Cite as

Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3

  • Martin T. Dove
  • Ian P. Swainson
  • Brian M. Powell
  • Donald C. Tennant
Original Paper

Abstract

Neutron powder diffraction studies of calcite on heating towards the orientational order–disorder phase transition show that the phase transition is not a simple analogue of an Ising-like transition, but more similar to a rotational analogue of Lindemann melting. The transition is precipitated by the librational amplitude of the carbonate molecular ions exceeding a critical value rather than a result of a statistical entropy of ‘wrong’ orientations. Using tested interatomic potentials the single-particle orientational potential and nearest-neighbour orientational interactions have been calculated.

References

  1. Bruce AD, Cowley RA (1981) Structural phase transitions. Taylor & Francis, LondonGoogle Scholar
  2. Dove MT, Powell BM (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Phys Chem Miner 16:503–507CrossRefGoogle Scholar
  3. Dove MT, Hagen ME, Harris MJ, Powell BM, Steigenberger U, Winkler B (1992a) Anomalous inelastic neutron scattering from calcite. J Phys Condens Matter 4:2761–2774CrossRefGoogle Scholar
  4. Dove MT, Winkler B, Leslie M, Harris MJ, Salje E (1992b) A new interatomic potential model for calcite. Am Mineral 77:244–250Google Scholar
  5. Ferrario M, Lynden-Bell RM, McDonald IR (1994) Structural fluctuations and the order–disorder phase-transition in calcite. J Phys Condens Matter 6:1345–1358CrossRefGoogle Scholar
  6. Gonschorek W, Schmahl WW, Weitzel W, Miehe G, Fuess H (1995) Anharmonic motion and multipolar expansion of the electron density in NaNO3. Z Kristallogr 210:843–849CrossRefGoogle Scholar
  7. Hagen M, Dove MT, Harris MJ, Steigenberger U, Powell BM (1992) Orientational order–disorder phase transition in calcite. Physica B180–181:276–278CrossRefGoogle Scholar
  8. Harris MJ (1999) A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3. Am Mineral 84:1632–1640Google Scholar
  9. Harris MJ, Dove MT, Swainson IP, Hagen ME (1998) Anomalous dynamical effects in calcite, CaCO3. J Phys Condens Matter 10:L423–L429CrossRefGoogle Scholar
  10. Hatch DM, Merill L (1981) Landau description of the calcite–CaCO3 (III) phase transition. Phys Rev B 23:368–374CrossRefGoogle Scholar
  11. Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Schober HR, Vogl G (1991) Phonon dispersion of the bcc phase of group IV-metals. I. Bcc zirconium, a model case of dynamical precursors of martensitic transitions. Phys Rev B 43:10948–10962CrossRefGoogle Scholar
  12. Larson AC, VonDreele RB (1987) GSAS—General Structure Analysis System. Los Alamos National Laboratory report LAUR-86-748Google Scholar
  13. Liu J, Duan C-G, Ossowski MM, Mei WN, Smith RW, Hardy JR (2001) Simulation of structural phase transition in NaNO3 and CaCO3. Phys Chem Miner 28:586–590CrossRefGoogle Scholar
  14. Lynden-Bell RM, Michel KH (1994) Translation–rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals. Rev Modern Phys 66:721–762CrossRefGoogle Scholar
  15. Lynden-Bell RM, Ferrario M, McDonald IR, Salje E (1989) A molecular dynamics study of orientational disordering in crystalline sodium nitrate. J Phys Condens Matter 1:6523–6542CrossRefGoogle Scholar
  16. Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600Google Scholar
  17. Merrill L, Bassett WA (1978) The crystal structure of CaCO3 (II), a high pressure metastable phase of calcium carbonate. Acta Crystallogr B 31:343–349CrossRefGoogle Scholar
  18. Michel KH, Naudts J (1978) Dynamics of translations and rotations in molecular crystals. J Chem Phys 68:216–228CrossRefGoogle Scholar
  19. Petry W, Flottmann T, Heiming A, Trampenau J, Alba M, Vogl G (1988) Atomistic study of anomalous self-diffusion in bcc β-titanium. Phys Rev Lett 61:722CrossRefPubMedGoogle Scholar
  20. Reeder RJ, Redfern SAT, Salje EKH (1988) Spontaneous strain at the structural phase transition in NaNO3. Phys Chem Miner 15:605–611CrossRefGoogle Scholar
  21. Rodriguez-Carvajal J (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, Toulouse, France, p 127Google Scholar
  22. Rollings JA, Tennant DC, Swainson IP (1998) A high-transmission furnace insert for neutron powder diffraction studies at high-temperatures under a pressurized reactive atmosphere. J Appl Crystallogr 31:299–301CrossRefGoogle Scholar
  23. Schmahl WW, Salje EKH (1990) X-ray diffraction study of the orientational order–disorder transition in NaNO3—evidence for order parameter coupling. Phys Chem Miner 16:790–798CrossRefGoogle Scholar
  24. Swainson IP, Hammond RP (2003) Hydrogen bonding in ikaite, CaCO3.6H2O. Mineral Mag 67:555–562CrossRefGoogle Scholar
  25. Swainson IP, Dove MT, Harris MJ (1998) The phase transitions in calcite and sodium nitrate. Physica B 241–243:397–399Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Martin T. Dove
    • 1
    • 2
  • Ian P. Swainson
    • 2
  • Brian M. Powell
    • 2
  • Donald C. Tennant
    • 2
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Canadian Neutron Beam Centre, National Research Council of CanadaChalk River LaboratoriesChalk RiverCanada

Personalised recommendations