Physics and Chemistry of Minerals

, Volume 32, Issue 7, pp 493–503 | Cite as

Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3

  • Martin T. Dove
  • Ian P. Swainson
  • Brian M. Powell
  • Donald C. Tennant
Original Paper


Neutron powder diffraction studies of calcite on heating towards the orientational order–disorder phase transition show that the phase transition is not a simple analogue of an Ising-like transition, but more similar to a rotational analogue of Lindemann melting. The transition is precipitated by the librational amplitude of the carbonate molecular ions exceeding a critical value rather than a result of a statistical entropy of ‘wrong’ orientations. Using tested interatomic potentials the single-particle orientational potential and nearest-neighbour orientational interactions have been calculated.



MTD wishes to thank EPSRC for financial support. We are pleased to acknowledge the collaboration with Mark Hagen and Mark Harris. We would also like to thank Ruth Lynden-Bell for discussions on the molecular dynamics simulation.


  1. Bruce AD, Cowley RA (1981) Structural phase transitions. Taylor & Francis, LondonGoogle Scholar
  2. Dove MT, Powell BM (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Phys Chem Miner 16:503–507CrossRefGoogle Scholar
  3. Dove MT, Hagen ME, Harris MJ, Powell BM, Steigenberger U, Winkler B (1992a) Anomalous inelastic neutron scattering from calcite. J Phys Condens Matter 4:2761–2774CrossRefGoogle Scholar
  4. Dove MT, Winkler B, Leslie M, Harris MJ, Salje E (1992b) A new interatomic potential model for calcite. Am Mineral 77:244–250Google Scholar
  5. Ferrario M, Lynden-Bell RM, McDonald IR (1994) Structural fluctuations and the order–disorder phase-transition in calcite. J Phys Condens Matter 6:1345–1358CrossRefGoogle Scholar
  6. Gonschorek W, Schmahl WW, Weitzel W, Miehe G, Fuess H (1995) Anharmonic motion and multipolar expansion of the electron density in NaNO3. Z Kristallogr 210:843–849CrossRefGoogle Scholar
  7. Hagen M, Dove MT, Harris MJ, Steigenberger U, Powell BM (1992) Orientational order–disorder phase transition in calcite. Physica B180–181:276–278CrossRefGoogle Scholar
  8. Harris MJ (1999) A new explanation for the unusual critical behavior of calcite and sodium nitrate, NaNO3. Am Mineral 84:1632–1640Google Scholar
  9. Harris MJ, Dove MT, Swainson IP, Hagen ME (1998) Anomalous dynamical effects in calcite, CaCO3. J Phys Condens Matter 10:L423–L429CrossRefGoogle Scholar
  10. Hatch DM, Merill L (1981) Landau description of the calcite–CaCO3 (III) phase transition. Phys Rev B 23:368–374CrossRefGoogle Scholar
  11. Heiming A, Petry W, Trampenau J, Alba M, Herzig C, Schober HR, Vogl G (1991) Phonon dispersion of the bcc phase of group IV-metals. I. Bcc zirconium, a model case of dynamical precursors of martensitic transitions. Phys Rev B 43:10948–10962CrossRefGoogle Scholar
  12. Larson AC, VonDreele RB (1987) GSAS—General Structure Analysis System. Los Alamos National Laboratory report LAUR-86-748Google Scholar
  13. Liu J, Duan C-G, Ossowski MM, Mei WN, Smith RW, Hardy JR (2001) Simulation of structural phase transition in NaNO3 and CaCO3. Phys Chem Miner 28:586–590CrossRefGoogle Scholar
  14. Lynden-Bell RM, Michel KH (1994) Translation–rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals. Rev Modern Phys 66:721–762CrossRefGoogle Scholar
  15. Lynden-Bell RM, Ferrario M, McDonald IR, Salje E (1989) A molecular dynamics study of orientational disordering in crystalline sodium nitrate. J Phys Condens Matter 1:6523–6542CrossRefGoogle Scholar
  16. Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Mineral 70:590–600Google Scholar
  17. Merrill L, Bassett WA (1978) The crystal structure of CaCO3 (II), a high pressure metastable phase of calcium carbonate. Acta Crystallogr B 31:343–349CrossRefGoogle Scholar
  18. Michel KH, Naudts J (1978) Dynamics of translations and rotations in molecular crystals. J Chem Phys 68:216–228CrossRefGoogle Scholar
  19. Petry W, Flottmann T, Heiming A, Trampenau J, Alba M, Vogl G (1988) Atomistic study of anomalous self-diffusion in bcc β-titanium. Phys Rev Lett 61:722CrossRefPubMedGoogle Scholar
  20. Reeder RJ, Redfern SAT, Salje EKH (1988) Spontaneous strain at the structural phase transition in NaNO3. Phys Chem Miner 15:605–611CrossRefGoogle Scholar
  21. Rodriguez-Carvajal J (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstracts of the satellite meeting on powder diffraction of the XV congress of the IUCr, Toulouse, France, p 127Google Scholar
  22. Rollings JA, Tennant DC, Swainson IP (1998) A high-transmission furnace insert for neutron powder diffraction studies at high-temperatures under a pressurized reactive atmosphere. J Appl Crystallogr 31:299–301CrossRefGoogle Scholar
  23. Schmahl WW, Salje EKH (1990) X-ray diffraction study of the orientational order–disorder transition in NaNO3—evidence for order parameter coupling. Phys Chem Miner 16:790–798CrossRefGoogle Scholar
  24. Swainson IP, Hammond RP (2003) Hydrogen bonding in ikaite, CaCO3.6H2O. Mineral Mag 67:555–562CrossRefGoogle Scholar
  25. Swainson IP, Dove MT, Harris MJ (1998) The phase transitions in calcite and sodium nitrate. Physica B 241–243:397–399Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Martin T. Dove
    • 1
    • 2
  • Ian P. Swainson
    • 2
  • Brian M. Powell
    • 2
  • Donald C. Tennant
    • 2
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Canadian Neutron Beam Centre, National Research Council of CanadaChalk River LaboratoriesChalk RiverCanada

Personalised recommendations