Physics and Chemistry of Minerals

, Volume 32, Issue 5–6, pp 388–399 | Cite as

Structure and physical property relations of Mn ilvaite

Part 1: Compositional, structural and Mössbauer data
  • K. T. FehrEmail author
  • J. Schneider
  • R. Hochleitner
  • E. Schmidbauer
Original Paper


Structural and compositional data as well as 57Fe Mössbauer parameters were determined on a natural Mn-rich monoclinic ilvaite crystal (ideal composition CaFe 2 2+ Fe3+Si2O8(OH)) which was used for electrical conductivity and thermopower measurements (part 2 of this paper). A zonar structure was found by electron microprobe analysis with a strong decrease in Mn concentration from the rim to the centre of the crystal in a plane perpendicular to the [001] direction. X-ray powder diffraction analysis of the most Mn-rich composition was performed. Mn2+ cations populate preferentially M2 sites of the ilvaite unit cell (space group P21/a), to a lower extent they reside on M1 and a reduced part is on Ca sites. The monoclinic angle was determined to β=90.178(4)°. The structural results are compared to literature data for other natural Mn-rich as well as low-impurity ilvaites; this concerns in particular the lattice b parameter and the undecided issue of the varying β angle. In the literature, the order parameter σ, which describes the varying degree of ordering of Fe2+–Fe3+ pairs on M11 and M12 sites in chains running parallel to the [001] direction, and structural defects are thought to be related to β. The interrelationship between β and σ with respect to a possible twin domain structure is discussed. Various 57Fe Mössbauer spectra were recorded between 151 K and 327 K. Mössbauer parameters and Fe2+/Fe3+ concentration ratios were determined from the fits to the spectra. Fitting of subspectra was accomplished with the idea to find assignments of Fe2+ and Fe3+ doublets in agreement with X-ray results. The fraction of Mn2+ substituting Fe2+ on M1 sites could be estimated.


X-ray diffraction Electron microprobe analysis 57Fe Mössbauer spectroscopy Mn-rich ilvaite 



One of the authors (E.S.) is indebted to the Deutsche Forschungsgemeinschaft for financial help.


  1. Bonazzi P, Bindi L (1999) Structural adjustments induced by heat treatment in ilvaite. Am Mineral 84:1604–1612Google Scholar
  2. Bonazzi P, Bindi L (2002) Structural properties and heat-induced oxidation-dehydrogenation of manganoan ilvaite from Perda Niedda mine, Sar-dinia, Italy. Am Mineral 87:845–852Google Scholar
  3. Carrozzini B (1994) Crystal structure refinements of ilvaite: new relation-ships between chemical composition and crystallographic parameters. Eur J Mineral 6:465–479Google Scholar
  4. Dietrich V (1972) Ilvait, Ferroantigorit und Greenalith als Begleiter oxidisch-sulfidischer Vererzungen in den Oberhalbsteiner Serpentiniten. Schweiz-erische Mineralogische und Petrographische Mitteilungen 52:57–74Google Scholar
  5. Finger LW, Hazen RM (1987) Crystal structure of monoclinic ilvaite and the nature of the monoclinic-orthorhombic transition at high pressure. Z Kristallogr 179:415–430CrossRefGoogle Scholar
  6. Finger LW, Hazen RM, Hugher JM (1982) Crystal structure of monoclinic ilvaite. Ann Rep Carnegie Inst Washington Yearb 81:386–388Google Scholar
  7. Ghazi-Bayat B, Amthauer G, Hellner E (1989) Synthesis and characterization of Mn-bearing ilvaite CaFe2+ 2-xMnxFe3+[Si2O7/O/(OH)]. Mineral Petrol 40:101–109CrossRefGoogle Scholar
  8. Ghazi-Bayat B, Behruzi M, Litterst FJ, Lottermoser W, Amthauer G (1992) Synthetic Mn-bearing ilvaite CaFe2+ 2-xMnxFe3+[Si2O7/O/(OH)]. Phys Chem Miner 18:491–496CrossRefGoogle Scholar
  9. Ghazi-Bayat B, Amthauer G, Ahsbahs H (1993) High pressure X-ray diffraction study of ilvaite CaFe2+ 2Fe3+[Si2O7/O/(OH)]. Phys Chem Minerals 20:402–406CrossRefGoogle Scholar
  10. Ghose S (1988) Charge localization and associated crystallographic and magnetic phase transitions in ilvaite, a mixed-valence iron silicate. In: Ghose S, Coey JMD, Salje E (eds) Structural and magnetic phase transitions in minerals, Advances in Physical Geochemistry, vol 7. Springer, Berlin Heidelberg New York, pp 141–161Google Scholar
  11. Ghose S, Hewat AW, Marezio M, Dang NV, Robie RA, Evans HT (1984b) Electron and spin ordering and associated phase transitions in ilvaite, a mixed valence iron silicate (abstr). Trans Am Geophys Union 65:289Google Scholar
  12. Ghose S, Hewat AW, Marezio M (1984a) A neutron powder diffraction study of the crystal and magnetic structures of ilvaite from 305 to 5 K—a mixed-valence iron silicate with an electronic transition. Phys Chem Miners 11:67–74CrossRefGoogle Scholar
  13. Ghose S, Gupta PKS, Schlemper EO (1985) Electron ordering in ilvaite, a mixed-valence iron silicate: crystal structure refinement at 138 K. Am Mineral 70:1248–1252Google Scholar
  14. Ghose S, Tsukimura K, Hatch DM (1989) Phase transitions in ilvaite, a mixed-valence iron silicate. II. A single crystal X-ray diffraction study and Landau theory of the monoclinic to orthorhombic phase transition induced by charge delocalization. Phys Chem Miner 16:483–496Google Scholar
  15. Goodenough JB (1966) Magnetism and the chemical bond. Interscience Publishers, New YorkGoogle Scholar
  16. Grant R, Wilson WE (2001) Daln'egorsk; Primorskiy Kray Russia. Min Rec 32:3–30Google Scholar
  17. Haga N, Takéuchi Y (1976) Neutron diffraction study of ilvaite. Z Kristallogr 144:161–174CrossRefGoogle Scholar
  18. Larsen AO, Dahlgren S (2002) Ilvaite from the Oslo Graben. N Jb Miner Abh 2002(4):169–181Google Scholar
  19. Litterst FJ, Amthauer G (1984) Electron delocalization in ilvaite, a reinterpretation of its 57Fe Mössbauer spectrum. Phys Chem Miner 10:250–255CrossRefGoogle Scholar
  20. Nolet DA, Burns RG (1979) Ilvaite: a study of temperature dependent electron delocalization by the Mössbauer effect. Phys Chem Miner 4:221–234CrossRefGoogle Scholar
  21. Plimer IR, Ashley PM (1978) Manganoan ilvaite from Broken Hill, N.S.W. and Ban Ban, Queensland, Australia. Miner Mag 42:85–88CrossRefGoogle Scholar
  22. Pouchu L, Pichoir F (1984) A new model for quantitative X-ray micro- analysis. Part I: application to the analysis of homogeneous samples. Rech Aerospat 3:13–38Google Scholar
  23. Robie RA, Evans HT, Hemingway BS (1988) Thermophysical properties of ilvaite CaFe2+ 2Fe3+Si2O7O(OH); heat capacity from 7 to 920 K and thermal expansion between 298 and 856 K. Phys Chem Miner 15:390–397CrossRefGoogle Scholar
  24. Sakthivel A, Young RA (1989) Program DBW3.2S for the Rietveld analysis of X-ray and neutron powder diffraction patterns. IUCR Int Workshop on the Rietveld method, Petten, p 48Google Scholar
  25. Schmidbauer E, Amthauer G (1998) Study of the electrical charge transport in ilvaite using impedance spectroscopy and thermopower data. Phys Chem Miner 25:522–533CrossRefGoogle Scholar
  26. Schneider J (1989) Profile refinement on IBM-PC’s. IUCr Int Workshop on the Rietveld method, Petten, p 71Google Scholar
  27. Simsa Z, Andrejev N (1969) The electrical properties of manganese-copper ferrites. Czech J Phys B19:1389–1399CrossRefGoogle Scholar
  28. Takéuchi Y, Haga N, Bunno M (1983) X-ray study on polymorphism of ilvaite, HCaFe2+ 2Fe3+O2[Si2O7]. Z Kristallogr 163:267–283CrossRefGoogle Scholar
  29. Takéuchi Y, Sawada H, Taniguchi H, Uno R, Tabira Y (1994) Submicroscopic twinning and chemical inhomogeneity of ilvaite, a mixed-valence iron sorosilicate HCaFe2+ 2Fe3+Si2O9. Z Kristallogr 209:861–869CrossRefGoogle Scholar
  30. Tjon JA, Blume M (1968) Mössbauer spectra in a fluctuating environment II. Randomly varying electric field gradients. Phys Rev 165:456–461CrossRefGoogle Scholar
  31. Weiss HM, Nöltner T, Stoffers P (1980) Das Auftreten von Ilvait in den Erzschlämmen des Roten Meeres. N Jb Miner Abh 139:239–253Google Scholar
  32. Whall TE, Salerno N, Proykova YG, Brabers VAM (1987) The electrical properties of MnFe2O4 at the Néel temperature. Phil Mag B 56:99–105CrossRefGoogle Scholar
  33. Wölfel ER (1981) A new method for quantitative X-ray analysis of multi-phase mixtures. J Appl Cryst 14:291–296CrossRefGoogle Scholar
  34. Wölfel ER (1983) A novel curved position sensitive proportional counter for X-ray diffractometry. J Appl Cryst 16:341–348CrossRefGoogle Scholar
  35. Xuemin K, Ghose S, Dunlap BD (1988) Phase transitions in ilvaite, a mixed- valence iron silicate I. A 57Fe Mössbauer study of magnetic order and spin frustration. Phys Chem Miner 16:55–60CrossRefGoogle Scholar
  36. Yamanaka T, Takéuchi Y (1979) Mössbauer spectra and magnetic features of ilvaites. Phys Chem Miner 4:149–159CrossRefGoogle Scholar
  37. Zyatkov II, Miroshkin VP, Panova YaI (1984) High-frequency conductivity of manganese-zinc ferrites. Phys Stat Sol(a) 83:645–650CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K. T. Fehr
    • 1
    Email author
  • J. Schneider
    • 2
  • R. Hochleitner
    • 3
  • E. Schmidbauer
    • 4
  1. 1.Department für Geo- und Umweltwissenschaften, Sektion Mineralogie, Petrologie und GeochemieUniversität MünchenMünchenGermany
  2. 2.Department für Geo- und Umweltwissenschaften, Sektion Kristallographie und MineralogieUniversität MünchenMünchenGermany
  3. 3.Mineralogische StaatssammlungMünchenGermany
  4. 4.Department für Geo- und Umweltwissenschaften, Sektion GeophysikUniversität MünchenMünchenGermany

Personalised recommendations