Physics and Chemistry of Minerals

, Volume 31, Issue 10, pp 721–732 | Cite as

Crystal structure of meteoritic schreibersites: determination of absolute structure

  • Roman Skála
  • Ivana Císařová
Original papers


Minerals of the schreibersite–nickelphosphide series (Fe,Ni)3P crystallize in the non-centrosymmetric space group \(I\bar 4\). As a consequence, they can possess two different spatial arrangements of the constituting atoms within the unit cell, related by the inversion symmetry operation. Here, we present the crystal structure refinements from single crystal X-ray diffraction data for schreibersite grains from iron meteorites Acuña, Carlton, Hex River Mts. (three different crystals), Odessa (two different crystals), Sikhote Alin, and Toluca aiming for the determination of the absolute structure of the examined crystals. The crystals studied cover the composition range from ~58 mol% to ~80 mol% Fe3P end-member. Unit-cell parameter a and volume of the unit cell V, as well as certain topological structural parameters tightly correlate with Fe3P content. Unit-cell parameter c, on the other hand, does not show such strong correlation. Eight of the nine crystal structure refinements allowed unambiguous absolute structure assignment. The single crystal extracted from Toluca is, however, of poor quality and consequently the structure refinement did not provide as good results as the rest of the materials. Also, this crystal has only weak inversion distinguishing power to provide unequivocal absolute structure determination. Six of the eight unambiguous absolute structure determinations indicated inverted atomic arrangement compared to that reported in earlier structure refinements (here called standard). Only two grains, one taken from Odessa iron and the other from the Hex River Mts. meteorite, reveal the dominance of standard crystal structure setting.


Schreibersite Absolute structure Crystal structure X-ray diffraction Iron meteorites 



The research has been supported by the grants of the Science Foundation of the Czech Republic (GAČR) No. 205/98/0655 and No. 205/02/1101. We are also grateful to Marcela Bukovanská of the Natural History Museum of the National Museum in Prague, Gero Kurat of Naturhistorisches Museum in Vienna and Yevgeny Plyaskov of Prague who provided material for single-crystal structure study. Václav Petříček of the Institute of Physics, Czech Academy of Science, Prague, kindly carried out transformations of intensity files to correspond to the invariant choice of the coordinate system.


  1. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) SIR92—a program for automatic solution of crystal structures by direct methods. J Appl Cryst 27:435CrossRefGoogle Scholar
  2. Aronsson B (1955) The crystal structure of Ni3P. (Fe3P-Type). Acta Chem Scand 9:137–140Google Scholar
  3. Blessing RH (1997) Outlier treatment in data merging. J Appl Cryst 30:421–426CrossRefGoogle Scholar
  4. Brearley AJ, Jones RH (1998) Chondritic meteorites. In: Papike JJ (ed) Planetary materials, reviews in Mineralogy, vol 36. Mineralogical Society of America, Washington, pp 3-1–3-398Google Scholar
  5. Buchwald VF (1975) Handbook of iron meteorites, vol 1: iron meteorites in general. University of California Press, BerkeleyGoogle Scholar
  6. Coppens P (1970)The evaluation of absorption and extinction in single crystal structure analysis. In: Ahmed FR, Hall SR, Huber CP (eds) Crystallographic computing. Munksgaard, Copenhagen, pp 255–270Google Scholar
  7. Crystal Impact (2001) DIAMOND—visual crystal structure information system. Version 2.1e. Crystal Impact, Bonn, GermanyGoogle Scholar
  8. Doenitz FD (1968) Die Kristallstruktur des Meteoritenminerals Rhabdit. Naturwiss 55:387CrossRefGoogle Scholar
  9. Doenitz FD (1970) Die Kristallstruktur des meteoritischen Rhabdits (Fe, Ni)3P. Zeit Kristall 131:222–236Google Scholar
  10. Enraf-Nonius (1989) CAD-4 Software. Version 5.0. Enraf-Nonius, DelftGoogle Scholar
  11. Farrugia LJ (1999) WinGX suite for small molecule single-crystal crystallography. J Appl Cryst 32:837–838CrossRefGoogle Scholar
  12. Flack HD (1983) On enantiomorph-polarity estimation. Acta Cryst A 39:876–881CrossRefGoogle Scholar
  13. Flack HD, Bernardinelli G (1999) Absolute structure and absolute configuration. Acta Cryst A 55:908–915CrossRefGoogle Scholar
  14. Flack HD, Bernardinelli G (2000) Reporting and evaluating absolute-structure and absolute-configuration determinations. J Appl Cryst 33:1143–1148CrossRefGoogle Scholar
  15. Hamilton WC (1965) Significance tests on the crystallographic R factor. Acta Cryst 18:502–510CrossRefGoogle Scholar
  16. Jones PG (1984a) The determination of absolute structure. I. Some experiences with Rogers η refinement. Acta Cryst A 40:660–662CrossRefGoogle Scholar
  17. Jones PG (1984b) The determination of absolute structure. II. Absolute configuration from the Cambridge Crystallographic Data Centre files for 1982. Acta Cryst A 40:663–668CrossRefGoogle Scholar
  18. Larsson E (1965) An X-ray investigation of the Ni–P system and the crystal structures of NiP and NiP2. Arkiv för Kemi 23:335–365Google Scholar
  19. Liu H-p, James P, Broddefalk A, Andersson Y, Granberg P, Eriksson O (1998) Structural and magnetic properties of (Fe1-xCox)3P compounds: experiment and theory. J Magn Magn Mater 189:69–82CrossRefGoogle Scholar
  20. Mittlefehldt DW, McCoy TJ, Goodrich CA, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. In Papike JJ (ed) Planetary materials, reviews in mineralogy, vol 36. Mineralogical Society of America, Washington, pp 4-1–4-195Google Scholar
  21. Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003a) Crystal structure of iron nickel phosphide, Fe1.7Ni1.3P, a Shreibersite extracted from Canyon Diablo meteorite. Zeit Kristall New Crystal Struct 218:391–392Google Scholar
  22. Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003b) Crystal structure of iron nickel phosphide, Fe1.65Ni1.35P, a Rhabdite extracted from Morasko meteorite. Zeit Kristall New Crystal Structures 218:393–394Google Scholar
  23. Moretzki O, Doering Th, Geist V, Morgenroth W, Wendschuh M (2003c) Crystal structure of iron nickel phosphide, Fe1.8Ni1.2P, a Schreibersite extracted from Orange River meteorite. Zeit Kristall, New Crystal Structures 218:395–396Google Scholar
  24. Nonius (1997–2000) COLLECT. Nonius BV, DelftGoogle Scholar
  25. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Methods in enzymology. Macromolecular crystallography A, vol 276. Academic, San Diego, pp 307–326Google Scholar
  26. Papike JJ, Ryder G, Shearer CK (1998) Lunar samples. In: Papike JJ (ed) Planetary materials, reviews in mineralogy, vol 36. Mineralogical Society of America, Washington, pp 5-1–5-234Google Scholar
  27. Petříček V, Dušek M (2000) JANA2000. Institute of Physics of the Czech Academy of Science, Czech RepublicGoogle Scholar
  28. Rogers D (1981) On the application of Hamilton’s ratio test to the assignment of absolute configuration and an alternative test. Acta Cryst A 37:734–741CrossRefGoogle Scholar
  29. Rundqvist S (1962) X-ray investigations of the ternary system Fe–B–P. Acta Chem Scand 16:1–19Google Scholar
  30. Rundqvist S, Hassler E, Lundvik L (1962) Refinement of the Ni3P structure. Acta Chem Scand 16:242–243Google Scholar
  31. Sheldrick GM (1997) SHELX97. Programs for Crystal Structure Analysis. Release 97-2. Institut für Anorganische Chemie, Universität Göttingen, GermanyGoogle Scholar
  32. Skála R, Drábek M (2000) Variation of unit-cell dimensions of experimentally synthesized members of Fe3P-Ni3P solid solution (abstract#1564). In: 31st lunar and planet science conference. CD-ROMGoogle Scholar
  33. Skála R, Drábek M (2003) Nickelphosphide from the Vicenice octahedrite: Rietveld crystal structure refinement of synthetic analogue. Mineral Mag 67:783–792CrossRefGoogle Scholar
  34. Skála R, Frýda J (1996) Schreibersite from the Vicenice iron: Rietveld crystal structure refinement—a preliminary report. In: 27th lunar and planet science conference. pp 1211–1212Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Inst. GeologyAcademy of Science of the Czech RepublicPraha 6Czech Republic
  2. 2.Department of Inorganic Chemistry, Faculty of ScienceCharles UniversityPraha 2Czech Republic
  3. 3.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany

Personalised recommendations