World Journal of Surgery

, Volume 43, Issue 12, pp 3153–3160 | Cite as

Prognostic Impact of the Neutrophil-to-Lymphocyte Ratio in Borderline Resectable Pancreatic Ductal Adenocarcinoma Treated with Neoadjuvant Chemoradiotherapy Followed by Surgical Resection

  • Hirokazu Kubo
  • Takashi Murakami
  • Ryusei Matsuyama
  • Yasuhiro Yabushita
  • Nobuhiro Tsuchiya
  • Yu Sawada
  • Yuki Homma
  • Takafumi Kumamoto
  • Itaru EndoEmail author
Original Scientific Report



Increasing evidence suggests that cancer-associated inflammation, as indicated by markers such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and modified Glasgow Prognostic Score (mGPS), predicts poor outcomes in pancreatic cancer. In this study, the associations between systemic inflammation markers and survival were examined in borderline resectable pancreatic ductal adenocarcinoma (BR-PDAC) patients who underwent neoadjuvant chemoradiotherapy (NACRT) followed by surgical resection.


From April 2009 to December 2017, 119 patients diagnosed with BR-PDAC and receiving NACRT followed by radical surgery were included in this retrospective study. The associations between the pre- and post-NACRT NLR, PLR, mGPS, and clinicopathological characteristics, as well as their predictive values for survival outcomes, were analyzed. This study was approved by an institutional review board at Yokohama City University (B180600049).


On multivariate analysis with a Cox’s proportional hazards regression model, post-NACRT NLR ≥3 (p = 0.040; hazard ratio, 2.24; 95% CI 1.28–3.91) and lymph node metastasis (p = 0.002; hazard ratio, 2.33; 95% CI 1.36–3.99) were significantly associated with shorter overall survival. The median survival time was 22.0 months for patients with post-NACRT NLR ≥3 and 45.0 months for patients with post-NACRT NLR <3 (p = 0.028).


The NLR following NACRT might predict survival in BR-PDAC patients. Patients with an elevated post-NACRT NLR or positive lymph node metastasis may be candidates for stronger adjuvant therapies.


Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67(1):7–30PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rahib L et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921PubMedPubMedCentralGoogle Scholar
  3. 3.
    Cunningham D et al (2009) Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J Clin Oncol 27(33):5513–5518PubMedPubMedCentralGoogle Scholar
  4. 4.
    Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966PubMedPubMedCentralGoogle Scholar
  5. 5.
    Von Hoff DD et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703Google Scholar
  6. 6.
    Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825PubMedPubMedCentralGoogle Scholar
  7. 7.
    Tang K et al (2016) Neoadjuvant therapy for patients with borderline resectable pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. Pancreatology 16(1):28–37PubMedPubMedCentralGoogle Scholar
  8. 8.
    Versteijne E et al (2018) Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br J Surg 105(8):946–958PubMedPubMedCentralGoogle Scholar
  9. 9.
    Koh CH et al (2015) Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer 113(1):150–158PubMedPubMedCentralGoogle Scholar
  10. 10.
    Krenn-Pilko S et al (2016) The elevated preoperative derived neutrophil-to-lymphocyte ratio predicts poor clinical outcome in breast cancer patients. Tumour Biol 37(1):361–368PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim JY et al (2014) Prognostic importance of baseline neutrophil to lymphocyte ratio in patients with advanced papillary thyroid carcinomas. Endocrine 46(3):526–531PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444PubMedPubMedCentralGoogle Scholar
  13. 13.
    Watson J, Round A, Hamilton W (2012) Raised inflammatory markers. BMJ 344:e454PubMedPubMedCentralGoogle Scholar
  14. 14.
    Krauthamer M et al (2013) A study of inflammation-based predictors of tumor response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Oncology 85(1):27–32PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nagasaki T et al (2015) Prognostic impact of neutrophil-to-lymphocyte ratio in patients with advanced low rectal cancer treated with preoperative chemoradiotherapy. Dig Surg 32(6):496–503PubMedPubMedCentralGoogle Scholar
  16. 16.
    Shen J et al (2017) Prognostic role of neutrophil-to-lymphocyte ratio in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Med Sci Monit 23:315–324PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sung S et al (2017) Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy. PLoS ONE 12(3):e0173955PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tempero MA et al (2014) Pancreatic adenocarcinoma, version 2.2014: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 12(8):1083–1093PubMedPubMedCentralGoogle Scholar
  19. 19.
    Teo M et al (2013) Prognostic role of neutrophil-to-lymphocyte ratio in advanced pancreatic ductal adenocarcinoma: impact of baseline fluctuation and changes during chemotherapy. Tumori 99(4):516–522PubMedPubMedCentralGoogle Scholar
  20. 20.
    Oh D, Pyo JS, Son BK (2018) Prognostic roles of inflammatory markers in pancreatic cancer: comparison between the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio. Gastroenterol Res Pract 2018:9745601PubMedPubMedCentralGoogle Scholar
  21. 21.
    Toiyama Y et al (2011) Evaluation of an inflammation-based prognostic score for the identification of patients requiring postoperative adjuvant chemotherapy for stage II colorectal cancer. Exp Ther Med 2(1):95–101PubMedPubMedCentralGoogle Scholar
  22. 22.
    Nishino M et al (2010) New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: comparison with original RECIST and impact on assessment of tumor response to targeted therapy. AJR Am J Roentgenol 195(3):W221–W228PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kurahara H et al (2019) Significance of (18)F-fluorodeoxyglucose (FDG) uptake in response to chemoradiotherapy for pancreatic cancer. Ann Surg Oncol 26(2):644–651PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wittekind C (2010) TNM system: on the 7th edition of TNM classification of malignant tumors. Pathologe 31(5):331–332PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175PubMedPubMedCentralGoogle Scholar
  26. 26.
    McColl SR et al (1992) Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 176(2):593–598PubMedPubMedCentralGoogle Scholar
  27. 27.
    Weitzman SA, Gordon LI (1990) Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76(4):655–663PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kusumanto YH et al (2003) Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 6(4):283–287PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fridlender ZG et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194PubMedPubMedCentralGoogle Scholar
  30. 30.
    Shimizu K et al (2015) Preoperative neutrophil/lymphocyte ratio and prognostic nutritional index predict survival in patients with non-small cell lung cancer. World J Surg Oncol 13:291PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yodying H et al (2016) prognostic significance of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in oncologic outcomes of esophageal cancer: a systematic review and meta-analysis. Ann Surg Oncol 23(2):646–654PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lian L et al (2015) Application of platelet/lymphocyte and neutrophil/lymphocyte ratios in early diagnosis and prognostic prediction in patients with resectable gastric cancer. Cancer Biomark 15(6):899–907PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee H et al (2016) High preoperative neutrophil-lymphocyte ratio predicts biochemical recurrence in patients with localized prostate cancer after radical prostatectomy. World J Urol 34(6):821–827PubMedPubMedCentralGoogle Scholar
  34. 34.
    Shin JS, Suh KW, Oh SY (2015) Preoperative neutrophil to lymphocyte ratio predicts survival in patients with T1-2N0 colorectal cancer. J Surg Oncol 112(6):654–657PubMedPubMedCentralGoogle Scholar
  35. 35.
    Luo G et al (2015) Blood neutrophil-lymphocyte ratio predicts survival in patients with advanced pancreatic cancer treated with chemotherapy. Ann Surg Oncol 22(2):670–676PubMedPubMedCentralGoogle Scholar
  36. 36.
    Katz MH et al (2012) Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 118(23):5749–5756PubMedPubMedCentralGoogle Scholar
  37. 37.
    Welsh JL et al (2012) Comparison of response evaluation criteria in solid tumors with volumetric measurements for estimation of tumor burden in pancreatic adenocarcinoma and hepatocellular carcinoma. Am J Surg 204(5):580–585PubMedPubMedCentralGoogle Scholar
  38. 38.
    Conroy T et al (2018) FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379(25):2395–2406PubMedPubMedCentralGoogle Scholar
  39. 39.
    Schrek R (1961) Qualitative and quantitative reactions of lymphocytes to x rays. Ann N Y Acad Sci 95:839–848PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hendry JH, Roberts SA (1990) Analysis of dose-incidence relationships for marrow failure in different species, in terms of radiosensitivity of tissue-rescuing units. Radiat Res 122(2):155–160PubMedPubMedCentralGoogle Scholar
  41. 41.
    Baird MC, Hendry JH, Testa NG (1989) The radiosensitivity of human haemopoietic progenitor cells. Int J Radiat Biol 56(5):617–621PubMedPubMedCentralGoogle Scholar
  42. 42.
    Nothdurft W, Steinbach KH, Fliedner TM (1983) In vitro studies on the sensitivity of canine granulopoietic progenitor cells (GM-CFC) to ionizing radiation: differences between steady state GM-CFC from blood and bone marrow. Int J Radiat Biol Relat Stud Phys Chem Med 43(2):133–140PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nothdurft W, Fliedner TM (1982) The response of the granulocytic progenitor cells (CFU-C) of blood and bone marrow in dogs exposed to low doses of X irradiation. Radiat Res 89(1):38–52PubMedPubMedCentralGoogle Scholar
  44. 44.
    Homma Y et al (2014) Immunological impact of neoadjuvant chemoradiotherapy in patients with borderline resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol 21(2):670–676PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gooden MJ et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103PubMedPubMedCentralGoogle Scholar
  46. 46.
    Murakami T et al (2017) Neoadjuvant chemoradiotherapy of pancreatic cancer induces a favorable immunogenic tumor microenvironment associated with increased major histocompatibility complex class I-related chain A/B expression. J Surg Oncol 116(3):416–426PubMedPubMedCentralGoogle Scholar
  47. 47.
    Homma Y et al (2014) Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clin Transl Oncol 16(3):330–335PubMedPubMedCentralGoogle Scholar
  48. 48.
    Mercan R et al (2016) The association between neutrophil/lymphocyte ratio and disease activity in rheumatoid arthritis and ankylosing spondylitis. J Clin Lab Anal 30(5):597–601PubMedPubMedCentralGoogle Scholar
  49. 49.
    Adamsson Eryd S et al (2012) Incidence of coronary events and case fatality rate in relation to blood lymphocyte and neutrophil counts. Arterioscler Thromb Vasc Biol 32(2):533–539PubMedPubMedCentralGoogle Scholar
  50. 50.
    Balta S et al (2013) Higher neutrophil to lymphocyte ratio in patients with metabolic syndrome. Clin Appl Thromb Hemost 19(5):579PubMedPubMedCentralGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2019

Authors and Affiliations

  • Hirokazu Kubo
    • 1
  • Takashi Murakami
    • 1
  • Ryusei Matsuyama
    • 1
  • Yasuhiro Yabushita
    • 1
  • Nobuhiro Tsuchiya
    • 1
  • Yu Sawada
    • 1
  • Yuki Homma
    • 1
  • Takafumi Kumamoto
    • 1
  • Itaru Endo
    • 1
    Email author
  1. 1.Department of Gastroenterological Surgery, Graduate School of MedicineYokohama City UniversityYokohamaJapan

Personalised recommendations