Emergency Abdominal Surgery Outcomes of Critically Ill Patients on Extracorporeal Membrane Oxygenation: A Case-Matched Study with a Propensity Score Analysis
- 15 Downloads
Abstract
Background
Extracorporeal membrane oxygenation (ECMO) induces coagulation disorders increasing the risk of bleeding during invasive procedures. We aimed to describe the outcomes of critically ill ECMO patients undergoing emergency abdominal surgery compared to non-ECMO patients.
Study design
This is a retrospective case-matched single-center study with propensity score analysis in a tertiary ICU. All patients who underwent abdominal surgery were included.
Results
From 2006 to 2014, 77 patients admitted in our ICU underwent emergency abdominal surgery, 35 were on ECMO. Surgery indications were comparable for ECMO and non-ECMO patients: mostly intestinal ischemia (42%) and cholecystectomy (25%). Postoperative bleeding was significantly more frequent in ECMO group versus non-ECMO: 77% versus 40% transfused, with medians of 13 (6–22) versus 3 (0–5) packed red blood cell; 9 (3–17) versus 0 (0–4) fresh frozen plasma and 12 (3–22) versus 0 (0–8) platelet units (p < 0.001 for all items). Reintervention for hemorrhage was required in 20% versus 2%, respectively, p = 0.02. At multivariable analysis, ECMO was strongly associated with bleeding (OR, 5.6 [95% CI, 2.0–15.4]; p = 0.001). ICU mortality was higher for ECMO-treated patients (69% vs. 33%; p = 0.003), but perioperative mortality remained comparable between groups (11% vs. 12%, NS). Propensity score-matched analysis confirmed more frequent and severe bleeding in ECMO patients.
Conclusions
Abdominal surgery procedures on ECMO-treated patients are associated with a higher risk of hemorrhage compared to non-ECMO ICU patients. Further studies are needed to optimize ECMO patient management during such interventions.
Abbreviations
- ARDS
Acute respiratory distress syndrome
- ECMO
Extracorporeal membrane oxygenation
- PRBCs
Packed red blood cell units
- SAPS
Simplified Acute Physiology Score
- SOFA
Sepsis-related organ failure assessment
- VA-ECMO
Venoarterial-extracorporeal membrane oxygenation
- VV-ECMO
Venovenous-extracorporeal membrane oxygenation
Notes
Compliance with ethical standards
Conflicts of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Combes A, Bréchot N, Luyt C-E et al (2012) What is the niche for extracorporeal membrane oxygenation in severe acute respiratory distress syndrome? Curr Opin Crit Care 18:527–532Google Scholar
- 2.Abrams D, Combes A, Brodie D (2014) Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. J Am Coll Cardiol 63:2769–2778Google Scholar
- 3.Brodie D, Bacchetta M (2011) Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 365:1905–1914Google Scholar
- 4.Zangrillo A, Biondi-Zoccai G, Landoni G et al (2013) Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. Crit Care Lond Engl 17:R30Google Scholar
- 5.Marasco SF, Preovolos A, Lim K et al (2007) Thoracotomy in adults while on ECMO is associated with uncontrollable bleeding. Perfusion 22:23–26Google Scholar
- 6.Aubron C, Cheng AC, Pilcher D et al (2013) Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: a 5-year cohort study. Crit Care Lond Engl 17:R73Google Scholar
- 7.Combes A, Leprince P, Luyt C-E et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411Google Scholar
- 8.Bréchot N, Luyt C-E, Schmidt M et al (2013) Venoarterial extracorporeal membrane oxygenation support for refractory cardiovascular dysfunction during severe bacterial septic shock. Crit Care Med 41:1616–1626Google Scholar
- 9.Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome (EOLIA trial). ClinicalTrials.gov NCT01470703Google Scholar
- 10.Aissaoui N, Luyt C-E, Leprince P et al (2011) Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med 37:1738–1745Google Scholar
- 11.Lamarche Y, Chow B, Bédard A et al (2010) Thromboembolic events in patients on extracorporeal membrane oxygenation without anticoagulation. Innovations 5:424–429Google Scholar
- 12.Lubnow M, Philipp A, Dornia C et al (2014) D-dimers as an early marker for oxygenator exchange in extracorporeal membrane oxygenation. J Crit Care 29:473.e1–473.e5Google Scholar
- 13.D’Agostino RB (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17:2265–2281Google Scholar
- 14.Taghavi S, Jayarajan SN, Mangi AA et al (2015) Examining noncardiac surgical procedures in patients on extracorporeal membrane oxygenation. ASAIO J Am Soc Artif Intern Organs 61:520–525Google Scholar
- 15.Taghavi S, Beyer C, Vora H et al (2014) Noncardiac surgery in patients on mechanical circulatory support. ASAIO J Am Soc Artif Intern Organs 60:670–674Google Scholar
- 16.Chestovich PJ, Kwon MH, Cryer HG et al (2011) Surgical procedures for patients receiving mechanical cardiac support. Am Surg 77:1314–1317Google Scholar
- 17.Cheung PY, Sawicki G, Salas E et al (2000) The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit Care Med 28:2584–2590Google Scholar
- 18.Straub A, Wendel HP, Dietz K et al (2008) Selective inhibition of the platelet phosphoinositide 3-kinase p110beta as promising new strategy for platelet protection during extracorporeal circulation. Thromb Haemost 99:609–615Google Scholar
- 19.Malfertheiner MV, Philipp A, Lubnow M et al (2016) Hemostatic changes during extracorporeal membrane oxygenation: a prospective randomized clinical trial comparing three different extracorporeal membrane oxygenation systems. Crit Care Med 44:747–754Google Scholar
- 20.Dornia C, Philipp A, Bauer S et al (2015) D-dimers are a predictor of clot volume inside membrane oxygenators during extracorporeal membrane oxygenation. Artif Organs 39:782–787Google Scholar
- 21.Heilmann C, Geisen U, Beyersdorf F et al (2012) Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive Care Med 38:62–68Google Scholar
- 22.Myles PS, Smith JA, Forbes A et al (2017) Tranexamic acid in patients undergoing coronary-artery surgery. N Engl J Med 376:136–148Google Scholar
- 23.Nair P, Hoechter DJ, Buscher H et al (2015) Prospective observational study of hemostatic alterations during adult extracorporeal membrane oxygenation (ECMO) using point-of-care thromboelastometry and platelet aggregometry. J Cardiothorac Vasc Anesth 29:288–296Google Scholar