World Journal of Surgery

, Volume 43, Issue 5, pp 1232–1242 | Cite as

18F-Fluorocholine PET/CT and Parathyroid 4D Computed Tomography for Primary Hyperparathyroidism: The Challenge of Reoperative Patients

  • Coralie Amadou
  • Géraldine Bera
  • Malek Ezziane
  • Linda Chami
  • Thierry Delbot
  • Agnès Rouxel
  • Monique Leban
  • Genevieve Herve
  • Fabrice Menegaux
  • Laurence Leenhardt
  • Aurélie Kas
  • Christophe Trésallet
  • Cécile Ghander
  • Charlotte Lussey-LepoutreEmail author
Original Scientific Report



To evaluate FCH-PET/CT and parathyroid 4D-CT so as to guide surgery in patients with primary hyperparathyroidism (pHPT) and prior neck surgery.


Medical records of all patients referred for a FCH-PET/CT in our institution were systematically reviewed. Only patients with pHPT, a history of neck surgery (for pHPT or another reason) and an indication of reoperation were included. All patients had parathyroid ultrasound (US) and Tc-99m-sestaMIBI scintigraphy, and furthermore, some patients had 4D-CT. Gold standard was defined by pathological findings and/or US-guided fine-needle aspiration with PTH level measurement in the washing liquid.


Twenty-nine patients were included in this retrospective study. FCH-PET/CT identified 34 abnormal foci including 19 ectopic localizations. 4D-CT, performed in 20 patients, detected 11 abnormal glands at first reading and 6 more under FCH-PET/CT guidance. US and Tc-99m-sestaMIBI found concordant foci in 8/29 patients. Gold standard was obtained for 32 abnormal FCH-PET/CT foci in 27 patients. On a per-lesion analysis, sensitivity, specificity, positive and negative predictive values were, respectively, 96%, 13%, 77% and 50% for FCH-PET/CT, 75%, 40%, 80% and 33% for 4D-CT. On a per-patient analysis, sensitivity was 85% for FCH-PET/CT and 63% for 4D-CT. FCH-PET/CT results made it possible to successfully remove an abnormal gland in 21 patients, including 12 with a negative or discordant US/Tc-99m-sestaMIBI scintigraphy result, with a global cure rate of 73%.


FCH-PET/CT is a promising tool in the challenging population of reoperative patients with pHPT. Parathyroid 4D-CT appears as a confirmatory imaging modality.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest for this study.

Supplementary material

268_2019_4910_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. 1.
    Fraser WD (2009) Hyperparathyroidism. Lancet 374:145–158CrossRefGoogle Scholar
  2. 2.
    Gough I (2006) Reoperative parathyroid surgery: the importance of ectopic location and multigland disease. ANZ J Surg 76:1048–1050CrossRefGoogle Scholar
  3. 3.
    Jaskowiak N, Norton JA, Alexander HR et al (1996) A prospective trial evaluating a standard approach to reoperation for missed parathyroid adenoma. Ann Surg 224:308–320 (discussion 320–301) CrossRefGoogle Scholar
  4. 4.
    Bergenfelz AO, Wallin G, Jansson S et al (2011) Results of surgery for sporadic primary hyperparathyroidism in patients with preoperatively negative sestamibi scintigraphy and ultrasound. Langenbeck’s Arch Surg/Deutsche Gesellschaft fur Chirurgie 396:83–90CrossRefGoogle Scholar
  5. 5.
    Parikh PP, Farra JC, Allan BJ et al (2015) Long-term effectiveness of localization studies and intraoperative parathormone monitoring in patients undergoing reoperative parathyroidectomy for persistent or recurrent hyperparathyroidism. Am J Surg 210:117–122CrossRefGoogle Scholar
  6. 6.
    Karakas E, Muller HH, Schlosshauer T et al (2013) Reoperations for primary hyperparathyroidism—improvement of outcome over two decades. Langenbeck’s Arch Surg/Deutsche Gesellschaft fur Chirurgie 398:99–106CrossRefGoogle Scholar
  7. 7.
    Hodolic M, Huchet V, Balogova S et al (2014) Incidental uptake of (18)F-fluorocholine (FCH) in the head or in the neck of patients with prostate cancer. Radiol Oncol 48:228–234CrossRefGoogle Scholar
  8. 8.
    Mapelli P, Busnardo E, Magnani P et al (2012) Incidental finding of parathyroid adenoma with 11C-choline PET/CT. Clin Nucl Med 37:593–595CrossRefGoogle Scholar
  9. 9.
    Quak E, Lheureux S, Reznik Y et al (2013) F18-choline, a novel PET tracer for parathyroid adenoma? J Clin Endocrinol Metab 98:3111–3112CrossRefGoogle Scholar
  10. 10.
    Kluijfhout WP, Pasternak JD, Gosnell JE et al (2017) 18F fluorocholine PET/MR imaging in patients with primary hyperparathyroidism and inconclusive conventional imaging: a prospective pilot study. Radiology 284:460–467CrossRefGoogle Scholar
  11. 11.
    Kluijfhout WP, Vorselaars WM, Vriens MR et al (2015) Enabling minimal invasive parathyroidectomy for patients with primary hyperparathyroidism using Tc-99m-sestamibi SPECT-CT, ultrasound and first results of (18)F-fluorocholine PET-CT. Eur J Radiol 84:1745–1751CrossRefGoogle Scholar
  12. 12.
    Lezaic L, Rep S, Sever MJ et al (2014) (1)(8)F-fluorocholine PET/CT for localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism: a pilot study. Eur J Nucl Med Mol Imaging 41:2083–2089CrossRefGoogle Scholar
  13. 13.
    Michaud L, Balogova S, Burgess A et al (2015) A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine (Baltimore) 94:e1701CrossRefGoogle Scholar
  14. 14.
    Michaud L, Burgess A, Huchet V et al (2014) Is 18F-fluorocholine-positron emission tomography/computerized tomography a new imaging tool for detecting hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism? J Clin Endocrinol Metab 99:4531–4536CrossRefGoogle Scholar
  15. 15.
    Quak E, Blanchard D, Houdu B et al (2018) F18-choline PET/CT guided surgery in primary hyperparathyroidism when ultrasound and MIBI SPECT/CT are negative or inconclusive: the APACH1 study. Eur J Nucl Med Mol Imaging 45:658–666CrossRefGoogle Scholar
  16. 16.
    van Raalte DH, Vlot MC, Zwijnenburg A et al (2015) F18-choline PET/CT: a novel tool to localize parathyroid adenoma? Clin Endocrinol (Oxf) 82:910–912CrossRefGoogle Scholar
  17. 17.
    Hoang JK, Sung WK, Bahl M et al (2014) How to perform parathyroid 4D CT: tips and traps for technique and interpretation. Radiology 270:15–24CrossRefGoogle Scholar
  18. 18.
    Bilezikian JP, Brandi ML, Eastell R et al (2014) Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the fourth international workshop. J Clin Endocrinol Metab 99:3561–3569CrossRefGoogle Scholar
  19. 19.
    Robbins KT, Clayman G, Levine PA et al (2002) Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg 128:751–758CrossRefGoogle Scholar
  20. 20.
    Fraker DL, Harsono H, Lewis R (2009) Minimally invasive parathyroidectomy: benefits and requirements of localization, diagnosis, and intraoperative PTH monitoring. Long-term results. World J Surg 33:2256–2265. CrossRefGoogle Scholar
  21. 21.
    Stack BC Jr, Bimston DN, Bodenner DL et al (2015) American Association of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: postoperative hypoparathyroidism-definitions and management. Endocr Pract 21:674–685CrossRefGoogle Scholar
  22. 22.
    Trimboli P, D’Aurizio F, Tozzoli R et al (2017) Measurement of thyroglobulin, calcitonin, and PTH in FNA washout fluids. Clin Chem Lab Med 55:914–925Google Scholar
  23. 23.
    Clopper C, Pearson E (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–4113CrossRefGoogle Scholar
  24. 24.
    Day KM, Elsayed M, Beland MD et al (2015) The utility of 4-dimensional computed tomography for preoperative localization of primary hyperparathyroidism in patients not localized by sestamibi or ultrasonography. Surgery 157:534–539CrossRefGoogle Scholar
  25. 25.
    Hinson AM, Lee DR, Hobbs BA et al (2015) Preoperative 4D CT localization of nonlocalizing parathyroid adenomas by ultrasound and SPECT-CT. Otolaryngol Head Neck Surg 153:775–778CrossRefGoogle Scholar
  26. 26.
    Suh YJ, Choi JY, Kim SJ et al (2015) Comparison of 4D CT, ultrasonography, and 99mTc sestamibi SPECT/CT in localizing single-gland primary hyperparathyroidism. Otolaryngol Head Neck Surg 152:438–443CrossRefGoogle Scholar
  27. 27.
    Hamidi M, Sullivan M, Hunter G et al (2018) 4D-CT is superior to ultrasound and sestamibi for localizing recurrent parathyroid disease. Ann Surg Oncol 25:1403–1409CrossRefGoogle Scholar
  28. 28.
    Piccardo A, Trimboli P, Rutigliani M et al. (2018) Additional value of integrated (18)F-choline PET/4D contrast-enhanced CT in the localization of hyperfunctioning parathyroid glands and correlation with molecular profile. Eur J Nucl Med Mol Imaging. Google Scholar
  29. 29.
    Campbell MJ, Sicuro P, Alseidi A et al (2015) Two-phase (low-dose) computed tomography is as effective as 4D-CT for identifying enlarged parathyroid glands. Int J Surg 14:80–84CrossRefGoogle Scholar
  30. 30.
    Treglia G, Piccardo A, Imperiale A et al. (2018) Diagnostic performance of choline PET for detection of hyperfunctioning parathyroid glands in hyperparathyroidism: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. Google Scholar
  31. 31.
    Hindie E, Zanotti-Fregonara P, Tabarin A et al (2015) The role of radionuclide imaging in the surgical management of primary hyperparathyroidism. J Nucl Med Off Publ Soc Nucl Med 56:737–744Google Scholar
  32. 32.
    Schalin-Jantti C, Ryhanen E, Heiskanen I et al (2013) Planar scintigraphy with 123I/99mTc-sestamibi, 99mTc-sestamibi SPECT/CT, 11C-methionine PET/CT, or selective venous sampling before reoperation of primary hyperparathyroidism? J Nucl Med Off Publ Soc Nucl Med 54:739–747Google Scholar
  33. 33.
    Witteveen JE, Kievit J, Stokkel MP et al (2011) Limitations of Tc99m-MIBI-SPECT imaging scans in persistent primary hyperparathyroidism. World J Surg 35:128–139. CrossRefGoogle Scholar
  34. 34.
    Yen TW, Wang TS, Doffek KM et al (2008) Reoperative parathyroidectomy: an algorithm for imaging and monitoring of intraoperative parathyroid hormone levels that results in a successful focused approach. Surgery 144:611–619 (discussion 619–621) CrossRefGoogle Scholar
  35. 35.
    Chami L, Hartl D, Leboulleux S et al (2015) Preoperative localization of neck recurrences from thyroid cancer: charcoal tattooing under ultrasound guidance. Thyroid 25:341–346CrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2019

Authors and Affiliations

  • Coralie Amadou
    • 1
  • Géraldine Bera
    • 2
    • 3
  • Malek Ezziane
    • 4
  • Linda Chami
    • 3
    • 4
  • Thierry Delbot
    • 2
  • Agnès Rouxel
    • 2
  • Monique Leban
    • 5
  • Genevieve Herve
    • 6
  • Fabrice Menegaux
    • 7
  • Laurence Leenhardt
    • 1
    • 3
  • Aurélie Kas
    • 2
    • 3
  • Christophe Trésallet
    • 7
    • 8
  • Cécile Ghander
    • 1
  • Charlotte Lussey-Lepoutre
    • 2
    • 9
    Email author
  1. 1.Department of Thyroid and Endocrine Tumours, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  2. 2.Department of Nuclear Medicine, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  3. 3.Laboratoire d’imagerie biomedicale (LIB), INSERM U1146Sorbonne UniversityParisFrance
  4. 4.Department of Radiology, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  5. 5.Laboratory of Endocrine Biochemistry, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  6. 6.Department of Histopathology, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  7. 7.Department of Endocrine Surgery, Pitié-Salpêtrière HospitalSorbonne UniversityParisFrance
  8. 8.Laboratoire d’imagerie fonctionnelle (LIF), INSERM U678Sorbonne UniversityParisFrance
  9. 9.INSERM, UMR970Paris-Cardiovascular Research CenterParisFrance

Personalised recommendations