Advertisement

World Journal of Surgery

, Volume 42, Issue 12, pp 3911–3917 | Cite as

Effects of Thoracic Epidural Anaesthesia on the Serosal Microcirculation of the Human Small Intestine

  • A. L. M. Tavy
  • A. F. J. de Bruin
  • K. van der Sloot
  • E. C. Boerma
  • C. Ince
  • P. G. Noordzij
  • D. Boerma
  • M. van Iterson
Original Scientific Report with Video
  • 99 Downloads

Abstract

Background

The effect of thoracic epidural analgesia (TEA) on splanchnic blood flow during abdominal surgery remains unclear. The purpose of this study was to examine whether the hemodynamic effects of TEA resulted in microcirculatory alterations to the intestinal serosa, which was visualized using incident dark-field (IDF) videomicroscopy.

Methods

An observational cohort study was performed. In 18 patients, the microcirculation of the intestinal serosa was visualized with IDF. Microcirculatory and hemodynamic measurements were performed prior to (T1) and after administering a bolus of levobupivacaine (T2). If correction of blood pressure was indicated, a third measurement was performed (T3). The following microcirculatory parameters were calculated: microvascular flow index, proportion of perfused vessels, perfused vessel density and total vessel density. Data are presented as median [IQR].

Results

Mean arterial pressure decreased from 73 mmHg (68–83) at T1 to 63 mmHg (±11) at T2 (p = 0.001) with a systolic blood pressure of 114 mmHg (98–128) and 87 (81–97), respectively (p = 0.001). The microcirculatory parameters of the bowel serosa, however, were unaltered. In seven patients, blood pressure was corrected to baseline values from a MAP of 56 mmHg (55–57), while microcirculatory parameters remained constant.

Conclusion

We examined the effects of TEA on the intestinal serosal microcirculation during abdominal surgery using IDF imaging for the first time in patients. Regardless of a marked decrease in hemodynamics, microcirculatory parameters of the bowel serosa were not significantly affected.

Trial registry number

ClinicalTrials.gov identifier NCT02688946.

Notes

Acknowledgements

We would like to express our gratitude to the patients who participated in this study and to all colleagues who contributed to our research.

Funding

Support was provided solely from institutional and/or departmental sources.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

268_2018_4746_MOESM1_ESM.mp4 (6 mb)
Supplementary material 1 (MP4 6167 kb)

References

  1. 1.
    Guay J, Nishimori M, Kopp S (2016) Epidural local anaesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting and pain after abdominal surgery. Cochrane database Syst Rev 7:CD001893PubMedGoogle Scholar
  2. 2.
    Fearon KCH, Ljungqvist O, Von Meyenfeldt M et al (2005) Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 24:466–477CrossRefGoogle Scholar
  3. 3.
    Siniscalchi A, Gamberini L, Laici C et al (2015) Thoracic epidural anesthesia: effects on splanchnic circulation and implications in Anesthesia and Intensive care. World J Crit Care Med 4:89–104CrossRefGoogle Scholar
  4. 4.
    Vignali A, Gianotti L, Braga M et al (2000) Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 43:76–82CrossRefGoogle Scholar
  5. 5.
    Sheridan WG, Lowndes RH, Young HL (1987) Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum 30:867–871CrossRefGoogle Scholar
  6. 6.
    Richards ER, Kabir SI, McNaught CE, MacFie J (2013) Effect of thoracic epidural anaesthesia on splanchnic blood flow. Br J Surg 100:316–321CrossRefGoogle Scholar
  7. 7.
    Freise H, Van Aken HK (2011) Risks and benefits of thoracic epidural anaesthesia. Br J Anaesth 107:859–868CrossRefGoogle Scholar
  8. 8.
    Edul VSK, Enrico C, Laviolle B et al (2012) Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 40:1443–1448CrossRefGoogle Scholar
  9. 9.
    Vellinga NAR, Boerma EC, Koopmans M et al (2015) International study on microcirculatory shock occurrence in acutely Ill patients. Crit Care Med 43:48–56CrossRefGoogle Scholar
  10. 10.
    Spanos A, Jhanji S, Vivian-Smith A et al (2010) Early microvascular changes in sepsis and severe sepsis. Shock 33:387–391CrossRefGoogle Scholar
  11. 11.
    de Bruin AFJ, Kornmann VNN, van der Sloot K et al (2016) Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery. Color Dis 18:103–110CrossRefGoogle Scholar
  12. 12.
    Aykut G, Veenstra G, Scorcella C et al (2015) Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp 3:1–10CrossRefGoogle Scholar
  13. 13.
    De Bruin AFJ, Tavy A, Van Der Sloot K et al (2016) Use of an image acquisition stabilizer improves sidestream dark field imaging of the serosa during open gastrointestinal surgery. J Vasc Res 53:121–127CrossRefGoogle Scholar
  14. 14.
    De Backer D, Hollenberg S, Boerma C et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101CrossRefGoogle Scholar
  15. 15.
    Dobbe JGG, Streekstra GJ, Atasever B et al (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46:659–670CrossRefGoogle Scholar
  16. 16.
    Massey MJ, Shapiro NI (2016) A guide to human in vivo microcirculatory flow image analysis. Crit Care 20:35CrossRefGoogle Scholar
  17. 17.
    Daudel F, Freise H, Westphal M et al (2007) Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis. Shock 28:610–614PubMedGoogle Scholar
  18. 18.
    Freise H, Lauer S, Anthonsen S et al (2006) thoracic epidural analgesia augments ileal mucosal capillary perfusion and improves survival in severe acute pancreatitis in rats. Anesthesiology 105:354–359CrossRefGoogle Scholar
  19. 19.
    Sielenkämper AW, Eicker K, Van Aken H (2000) Thoracic epidural anesthesia increases mucosal perfusion in ileum of rats. Anesthesiology 93:844–851CrossRefGoogle Scholar
  20. 20.
    Adolphs J, Schmidt DK, Mousa SA et al (2003) Thoracic epidural anesthesia attenuates hemorrhage- induced impairment of intestinal perfusion in rats. Anesthesiology 99:685–692CrossRefGoogle Scholar
  21. 21.
    Michelet P, Roch A, D’Journo X et al (2007) Effect of thoracic epidural analgesia on gastric blood flow after oesophagectomy. Acta Anaesthesiol Scand 51:587–594CrossRefGoogle Scholar
  22. 22.
    Schwarte LA, Picker O, Höhne C et al (2004) Effects of thoracic epidural anaesthesia on microvascular gastric mucosal oxygenation in physiological and compromised circulatory conditions in dogs. Br J Anaesth 93:552–559CrossRefGoogle Scholar
  23. 23.
    Gould T, Grace K, Thorne G, Thomas M (2002) Effect of thoracic epidural anaesthesia on splanchnic blood flow. Br J Anaesth 89:446–451CrossRefGoogle Scholar
  24. 24.
    Lundberg J, Lundberg D, Norgren L et al (1990) Intestinal hemodynamics during laparotomy: effects of thoracic epidural anesthesia and dopamine in humans. Anesth Analg 71:9–15CrossRefGoogle Scholar
  25. 25.
    Pathak D, Pennefather SH, Russell GN et al (2013) Phenylephrine infusion improves blood flow to the stomach during oesophagectomy in the presence of a thoracic epidural analgesia. Eur J Cardio Thoracic Surg 44:130–133CrossRefGoogle Scholar
  26. 26.
    Al-Rawi OY, Pennefather SH, Page RD et al (2008) The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg 106:884–887CrossRefGoogle Scholar
  27. 27.
    Ambrus R, Achiam MP, Secher NH et al (2017) Evaluation of gastric microcirculation by laser speckle contrast imaging during esophagectomy. J Am Coll Surg 225:395–402CrossRefGoogle Scholar
  28. 28.
    Väisänen O, Parviainen I, Ruokonen E et al (1998) Epidural analgesia with bupivacaine does not improve splanchnic tissue perfusion after aortic reconstruction surgery. Br J Anaesth 81:893–898CrossRefGoogle Scholar
  29. 29.
    Vagts DA, Iber T, Szabo B et al (2003) Effects of epidural anaesthesia on intestinal oxygenation in pigs. Br J Anaesth 90:212–220CrossRefGoogle Scholar
  30. 30.
    Van Den Oever HLA, Dzoljic M, Ince C et al (2006) Orthogonal polarization spectral imaging of the microcirculation during acute hypervolemic hemodilution and epidural lidocaine injection. Anesth Analg 103:484–487CrossRefGoogle Scholar
  31. 31.
    Nakatsuka M (2002) Assessment of gut mucosal perfusion and colonic tissue blood flow during abdominal aortic surgery with gastric tonometry and laser Doppler flowmetry. Vasc Endovasc Surg 36:193–198CrossRefGoogle Scholar
  32. 32.
    Siegemund M, Van Bommel J, Stegenga ME et al (2010) Aortic cross-clamping and reperfusion in pigs reduces microvascular oxygenation by altered systemic and regional blood flow distribution. Anesth Analg 111:345–353CrossRefGoogle Scholar
  33. 33.
    Dubin A, Edul VSK, Pozo MO et al (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36:535–542CrossRefGoogle Scholar
  34. 34.
    McLeod RS, Aarts M-A, Chung F et al (2015) Development of an enhanced recovery after surgery guideline and implementation strategy based on the knowledge-to-action cycle. Ann Surg 262:1016–1025CrossRefGoogle Scholar
  35. 35.
    Fumagalli U, Melis A, Balazova J et al (2016) Intra-operative hypotensive episodes may be associated with post-operative esophageal anastomotic leak. Updates Surg 68:185–190CrossRefGoogle Scholar
  36. 36.
    Hiltebrand LB, Krejci V, tenHoevel ME et al (2003) Redistribution of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia. Anesthesiology 98:658–669CrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2018

Authors and Affiliations

  • A. L. M. Tavy
    • 1
  • A. F. J. de Bruin
    • 1
  • K. van der Sloot
    • 2
  • E. C. Boerma
    • 3
  • C. Ince
    • 4
  • P. G. Noordzij
    • 1
  • D. Boerma
    • 5
  • M. van Iterson
    • 1
  1. 1.Department of Anesthesiology, Intensive Care and Pain MedicineSt. Antonius HospitalNieuwegeinThe Netherlands
  2. 2.Department of Anesthesiology and Pain MedicineThe Hague Medical CenterThe HagueThe Netherlands
  3. 3.Department of Intensive CareMedical Center LeeuwardenLeeuwardenThe Netherlands
  4. 4.Department of Translational PhysiologyAcademic Medical CenterAmsterdamThe Netherlands
  5. 5.Department of SurgerySt. Antonius HospitalNieuwegeinThe Netherlands

Personalised recommendations