Advertisement

Robotic Versus Conventional Laparoscopic Surgery for Colorectal Cancer: A Systematic Review and Meta-Analysis with Trial Sequential Analysis

  • Ka Ting NgEmail author
  • Azlan Kok Vui Tsia
  • Vanessa Yu Ling Chong
Scientific Review

Abstract

Background

Minimally invasive surgery has been considered as an alternative to open surgery by surgeons for colorectal cancer. However, the efficacy and safety profiles of robotic and conventional laparoscopic surgery for colorectal cancer remain unclear in the literature. The primary aim of this review was to determine whether robotic-assisted laparoscopic surgery (RAS) has better clinical outcomes for colorectal cancer patients than conventional laparoscopic surgery (CLS).

Methods

All randomized clinical trials (RCTs) and observational studies were systematically searched in the databases of CENTRAL, EMBASE and PubMed from their inception until January 2018. Case reports, case series and non-systematic reviews were excluded.

Results

Seventy-three studies (6 RCTs and 67 observational studies) were eligible (n = 169,236) for inclusion in the data synthesis. In comparison with the CLS arm, RAS cohort was associated with a significant reduction in the incidence of conversion to open surgery (ρ < 0.001, I2 = 65%; REM: OR 0.40; 95% CI 0.30,0.53), all-cause mortality (ρ < 0.001, I2 = 7%; FEM: OR 0.48; 95% CI 0.36,0.64) and wound infection (ρ < 0.001, I2 = 0%; FEM: OR 1.24; 95% CI 1.11,1.39). Patients who received RAS had a significantly shorter duration of hospitalization (ρ < 0.001, I2 = 94%; REM: MD − 0.77; 95% CI 1.12, − 0.41; day), time to oral diet (ρ < 0.001, I2 = 60%; REM: MD − 0.43; 95% CI − 0.64, − 0.21; day) and lesser intraoperative blood loss (ρ = 0.01, I2 = 88%; REM: MD − 18.05; 95% CI − 32.24, − 3.85; ml). However, RAS cohort was noted to require a significant longer duration of operative time (ρ < 0.001, I2 = 93%; REM: MD 38.19; 95% CI 28.78,47.60; min).

Conclusions

This meta-analysis suggests that RAS provides better clinical outcomes for colorectal cancer patients as compared to the CLS at the expense of longer duration of operative time. However, the inconclusive trial sequential analysis and an overall low level of evidence in this review warrant future adequately powered RCTs to draw firm conclusion.

Notes

Acknowledgements

We would like to extend our gratitude to Dr Carlo Corbellini and Dr Luca Cardinali for sharing the copy of their articles to complete this meta-analysis. We would like to thank Mr Bryan Allan for proof-reading this manuscript.

Authors’ contributions

KN and AT contributed to protocol/project management, data collection or management, data analysis and manuscript writing/editing. VC involved in protocol/project management and data collection or management.

Compliance with ethical standards

Conflict of interest

All authors have declared that they do not have any conflicts of interest in this review.

Supplementary material

268_2018_4896_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (DOCX 4142 kb)

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Addae JK, Gani F, Fang SY et al (2017) A comparison of trends in operative approach and postoperative outcomes for colorectal cancer surgery. J Surg Res 208:111–120CrossRefPubMedGoogle Scholar
  3. 3.
    Jung YB, Kang J, Park EJ et al (2016) Time to initiation of adjuvant chemotherapy in colon cancer: comparison of open, laparoscopic, and robotic surgery. J Laparoendosc Adv Surg Tech 26:799–805CrossRefGoogle Scholar
  4. 4.
    Chen S-T, Wu M-C, Hsu T-C et al (2017) Comparison of outcome and cost among open, laparoscopic, and robotic surgical treatments for rectal cancer: a propensity score matched analysis of nationwide inpatient sample data. J Surg Oncol 117:1–9Google Scholar
  5. 5.
    Midura EF, Hanseman DJ, Hoehn RS et al (2015) The effect of surgical approach on short-term oncologic outcomes in rectal cancer surgery. Surg US 158:453–459CrossRefGoogle Scholar
  6. 6.
    Kang J, Park YA, Baik SH et al (2016) A comparison of open, laparoscopic, and robotic surgery in the treatment of right-sided colon cancer. Surg Laparosc Endosc Percutaneous Tech 26:497–502CrossRefGoogle Scholar
  7. 7.
    Sun Z, Kim J, Adam MA et al (2016) Minimally invasive versus open low anterior resection equivalent survival in a national analysis of 14,033 patients with rectal cancer. Ann Surg 263:1152–1158CrossRefPubMedGoogle Scholar
  8. 8.
    Guillou PJ, Quirke P, Thorpe H et al (2005) Short-term endpoints of conventional versus laparoscopic- assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 365:1718–1726CrossRefPubMedGoogle Scholar
  9. 9.
    Jayne DG, Thorpe HC, Copeland J et al (2010) Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg 97:1638–1645CrossRefPubMedGoogle Scholar
  10. 10.
    Jeong SY, Park JW, Nam BH et al (2014) Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): Survival outcomes of an open-label, non-inferiority, randomised controlled trial. Lancet Oncol 15:767–774CrossRefPubMedGoogle Scholar
  11. 11.
    van der Pas MHGM, Haglind E, Cuesta MA et al (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218CrossRefPubMedGoogle Scholar
  12. 12.
    Wang G, Wang Z, Jiang Z et al (2016) Male urinary and sexual function after robotic pelvic autonomic nerve-preserving surgery for rectal cancer. Int J Med Robotics Comput Assist Surg 13:e1725CrossRefGoogle Scholar
  13. 13.
    Jayne D, Pigazzi A, Marshall H et al (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer the rolarr randomized clinical trial. JAMA, J Am Med Assoc 318:1569–1580CrossRefGoogle Scholar
  14. 14.
    Kim MJ, Park SC, Park JW et al (2017) Robot-assisted versus laparoscopic surgery for rectal cancer: a phase II open label prospective randomized controlled trial. Ann Surg 267:243–251CrossRefGoogle Scholar
  15. 15.
    Speicher PJ, Englum BR, Ganapathi AM et al (2015) Robotic low anterior resection for rectal cancer: a national perspective on short-term oncologic outcomes. Ann Surg 262:1040–1045CrossRefPubMedGoogle Scholar
  16. 16.
    Baek SJ, AL-Asari S, Jeong DH et al (2013) Robotic versus laparoscopic coloanal anastomosis with or without intersphincteric resection for rectal cancer. Surg Endosc Other Interv Tech 27:4157–4163CrossRefGoogle Scholar
  17. 17.
    Yamaguchi T, Kinugasa Y, Shiomi A et al (2015) Robotic-assisted vs. conventional laparoscopic surgery for rectal cancer: short-term outcomes at a single center. Surg Today 46:957–962CrossRefPubMedGoogle Scholar
  18. 18.
    Wilder FG, Burnett A, Oliver J et al (2015) A review of the long-term oncologic outcomes of robotic surgery versus laparoscopic surgery for colorectal cancer. Indian J Surg 78:214–219CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liao G, Zhao Z, Lin S et al (2014) Robotic-assisted versus laparoscopic colorectal surgery: A meta-analysis of four randomized controlled trials. World J Surg Oncol 12:122CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang X, Wei ZQ, Bie MJ et al (2016) Robot-assisted versus laparoscopic-assisted surgery for colorectal cancer: a meta-analysis. Surg Endosc 30:5601–5614CrossRefPubMedGoogle Scholar
  21. 21.
    Sheng SH, Zhao TC, Wang X (2018) Robot-assisted versus laparoscopic-assisted surgery for colorectal cancer: a meta-analysis: a network meta-analysis. Medicine Baltimore 97:e11817CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015. BMJ 349:g4647CrossRefGoogle Scholar
  23. 23.
    Koh FHX, Tan K-K, Lieske B et al (2014) Endowrist versus wrist: a case-controlled study comparing robotic versus hand-assisted laparoscopic surgery for rectal cancer. Surg Laparosc Endosc Percutan Tech 24:452–456CrossRefPubMedGoogle Scholar
  24. 24.
    Fernandez R, Anaya DA, Li LT et al (2013) Laparoscopic versus robotic rectal resection for rectal cancer in a veteran population. Am J Surg 206:509–517CrossRefPubMedGoogle Scholar
  25. 25.
    Wells G, Shea B, O’Connell D et al (2014) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. The Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed May 2018
  26. 26.
    McPheeters ML, Kripalani S, Peterson NB et al (2012) Quality improvement interventions to address health disparities. Closing the quality gap: revisiting the state of the science. Evid Rep Technol Assess (Full Rep) 208:G1–2Google Scholar
  27. 27.
    Wan X, Wang W, Liu J et al (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:1–13CrossRefGoogle Scholar
  28. 28.
    Ryan R, Hill S (2016) How to GRADE the quality of the evidence, version 3.0. Cochrane Consumers and Communication Group. http://cccrg.cochrane.org/author-resources. Accessed May 2018
  29. 29.
    Cochrane (2017) 16.9.3 Studies with no events. In: Cochrane handbook for systematic reviews of interventions. https://handbook-5-1.cochrane.org/chapter_16/16_9_3_studies_with_no_events.htm. Accessed May 2018
  30. 30.
    Thorlund K, Engstrom J, Wetterslev J et al (2017) User manual for trial sequential analysis (TSA). Copenhagen Trial Unit 1:1–114Google Scholar
  31. 31.
    Ferrara F, Piagnerelli R, Scheiterle M et al (2016) Laparoscopy versus robotic surgery for colorectal cancer: a single-center initial experience. Surg Innov 23:374–380CrossRefPubMedGoogle Scholar
  32. 32.
    Pigazzi A, Ellenhorn JDI, Ballantyne GH et al (2006) Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. Surg Endosc Other Interv Tech 20:1521–1525CrossRefGoogle Scholar
  33. 33.
    Baik SH, Kwon HY, Kim JS et al (2009) Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study. Ann Surg Oncol 16:1480–1487CrossRefPubMedGoogle Scholar
  34. 34.
    Patriti A, Ceccarelli G, Bartoli A et al (2009) Short- and medium-term outcome of robot-assisted and traditional laparoscopic rectal resection. JSLS 13:176–183PubMedPubMedCentralGoogle Scholar
  35. 35.
    Bianchi PP, Ceriani C, Locatelli A et al (2010) Robotic versus laparoscopic total mesorectal excision for rectal cancer: a comparative analysis of oncological safety and short-term outcomes. Surg Endosc Other Interv Tech 24:2888–2894CrossRefGoogle Scholar
  36. 36.
    Popescu I, Vasilescu C, Tomulescu V et al (2010) The minimally invasive approach, laparoscopic and robotic, in rectal resection for cancer: a single center experience. Acta Chir Iugosl 57:29–35CrossRefPubMedGoogle Scholar
  37. 37.
    Baek J-H, Pastor C, Pigazzi A (2010) Robotic and laparoscopic total mesorectal excision for rectal cancer: a case-matched study. Surg Endosc 25:521–525CrossRefPubMedGoogle Scholar
  38. 38.
    Bertani E, Chiappa A, Biffi R et al (2011) Assessing appropriateness for elective colorectal cancer surgery: clinical, oncological, and quality-of-life short-term outcomes employing different treatment approaches. Int J Colorectal Dis 26:1317–1327CrossRefPubMedGoogle Scholar
  39. 39.
    Jiménez Rodríguez RM, Díaz Pavón JM, de La Portilla de Juan F et al (2011) Prospective randomised study: robotic-assisted versus conventional laparoscopic surgery in colorectal cancer resection. Cirugía Española 89:432–438 (English Ed) CrossRefPubMedGoogle Scholar
  40. 40.
    Kwak JM, Kim SH, Kim J et al (2011) Robotic vs laparoscopic resection of rectal cancer: Short-term outcomes of a case-control study. Dis Colon Rectum 54:151–156CrossRefPubMedGoogle Scholar
  41. 41.
    Patel CB, Ragupathi M, Ramos-Valadez DI et al (2011) A three-arm (laparoscopic, hand-assisted, and robotic) matched-case analysis of intraoperative and postoperative outcomes in minimally invasive colorectal surgery. Dis Colon Rectum 54:144–150CrossRefPubMedGoogle Scholar
  42. 42.
    Erguner I, Aytac E, Boler DE et al (2012) What have we gained by performing robotic rectal resection? Evaluation of 64 consecutive patients who underwent laparoscopic or robotic low anterior resection for rectal adenocarcinoma. Surg Laparosc Endosc Percutaneous Tech 23:316–319CrossRefGoogle Scholar
  43. 43.
    Lim DR, Min BS, Kim MS et al (2012) Robotic versus laparoscopic anterior resection of sigmoid colon cancer: comparative study of long-term oncologic outcomes. Surg Endosc 27:1379–1385CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    D’Annibale A, Pernazza G, Monsellato I et al (2013) Total mesorectal excision: A comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg Endosc Other Interv Tech 27:1887–1895CrossRefGoogle Scholar
  45. 45.
    Helvind NM, Eriksen JR, Mogensen A et al (2013) No differences in short-term morbidity and mortality after robot-assisted laparoscopic versus laparoscopic resection for colonic cancer: a case-control study of 263 patients. Surg Endosc Other Interv Tech 27:2575–2580CrossRefGoogle Scholar
  46. 46.
    Kang J, Yoon KJ, Min BS et al (2013) The impact of robotic surgery for mid and low rectal cancer: a case-matched analysis of a 3-arm comparison - Open, laparoscopic, and robotic surgery. Ann Surg 257:95–101CrossRefPubMedGoogle Scholar
  47. 47.
    Kuo LJ, Lin YK, Chang CC et al (2014) Clinical outcomes of robot-assisted intersphincteric resection for low rectal cancer: Comparison with conventional laparoscopy and multifactorial analysis of the learning curve for robotic surgery. Int J Colorectal Dis 29:555–562CrossRefPubMedGoogle Scholar
  48. 48.
    Melich G, Hong YK, Kim J et al (2014) Simultaneous development of laparoscopy and robotics provides acceptable perioperative outcomes and shows robotics to have a faster learning curve and to be overall faster in rectal cancer surgery: analysis of novice MIS surgeon learning curves. Surg Endosc Other Interv Tech 29:558–568CrossRefGoogle Scholar
  49. 49.
    Tam MS, Abbass M, Abbas MA (2014) Robotic-laparoscopic rectal cancer excision versus traditional laparoscopy. JSLS J Soc Laparoendosc Surg 18(e2014):00020Google Scholar
  50. 50.
    Byrn JC, Hrabe JE, Armstrong JG et al (2015) Single-incision robotic colectomy: are costs prohibitive? Int J Med Robot Comput Assist Surg 12:303–308CrossRefGoogle Scholar
  51. 51.
    Colombo PE, Bertrand MM, Alline M et al (2015) Robotic versus laparoscopic total mesorectal excision (TME) for Sphincter-saving surgery: is there any difference in the transanal TME rectal approach? A single-center series of 120 consecutive patients. Ann Surg Oncol 23:1594–1600CrossRefPubMedGoogle Scholar
  52. 52.
    Ramji KM, Cleghorn MC, Josse JM et al (2015) Comparison of clinical and economic outcomes between robotic, laparoscopic, and open rectal cancer surgery: early experience at a tertiary care center. Surg Endosc 30:1337–1343CrossRefPubMedGoogle Scholar
  53. 53.
    Shibata J, Ishihara S, Tada N et al (2015) Surgical stress response after colorectal resection: a comparison of robotic, laparoscopic, and open surgery. Tech Coloproctol 19:275–280CrossRefPubMedGoogle Scholar
  54. 54.
    Gorgun E, Aytac E, Gurland B et al (2015) Case-matched comparison of robotic versus laparoscopic colorectal surgery : initial institutional experience. Surg Laparosc Endosc Percutan Tech 25:148–151CrossRefGoogle Scholar
  55. 55.
    Sawada H, Egi H, Hattori M et al (2015) Initial experiences of robotic versus conventional laparoscopic surgery for colorectal cancer, focusing on short-term outcomes: a matched case-control study. World J Surg Oncol 13:1–6CrossRefGoogle Scholar
  56. 56.
    Bedirli A, Salman B, Yuksel O (2016) Robotic versus laparoscopic resection for mid and low rectal cancers. JSLS J Soc Laparoendosc Surg 20(e2015):00110Google Scholar
  57. 57.
    Bozkurt MA, Kocatas A, Gemici E et al (2016) Robotic versus conventional laparoscopic colorectal operations: a-single center experience. Turkish J Surg 32:93–96CrossRefGoogle Scholar
  58. 58.
    Cardinali L, Ortenzi M (2016) robotic versus laparoscopic right colectomy for cancer: short-term outcomes and influence of Body Mass index on conversion rate. Minerva Chir 71:217–222PubMedGoogle Scholar
  59. 59.
    de’Angelis N, Lizzi V, Azoulay D et al (2016) Robotic versus laparoscopic right colectomy for colon cancer: analysis of the initial simultaneous learning curve of a surgical fellow. J Laparoendosc Adv Surg Tech 26:882–892CrossRefGoogle Scholar
  60. 60.
    de Jesus JP, Valadão M, de Castro Araujo RO et al (2016) The circumferential resection margins status: A comparison of robotic, laparoscopic and open total mesorectal excision for mid and low rectal cancer. Eur J Surg Oncol 42:808–812CrossRefPubMedGoogle Scholar
  61. 61.
    Baik SH, Ko YT, Kang CM et al (2008) Robotic tumor-specific mesorectal excision of rectal cancer: Short-term outcome of a pilot randomized trial. Surg Endosc Other Interv Tech 22:1601–1608CrossRefGoogle Scholar
  62. 62.
    Gorgun E, Ozben V, Costedio M et al (2016) Robotic versus conventional laparoscopic rectal cancer surgery in obese patients. Color Dis 18:1063–1071CrossRefGoogle Scholar
  63. 63.
    Law WL, Foo DCC (2016) Comparison of short-term and oncologic outcomes of robotic and laparoscopic resection for mid- and distal rectal cancer. Surg Endosc Other Interv Tech 31:2798–2807CrossRefGoogle Scholar
  64. 64.
    Morelli L, Guadagni S, Lorenzoni V et al (2016) Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon’s experience: a cost analysis covering the initial 50 robotic cases with the da Vinci Si. Int J Colorectal Dis 31:1639–1648CrossRefPubMedGoogle Scholar
  65. 65.
    Panteleimonitis S, Ahmed J, Ramachandra M et al (2016) Urogenital function in robotic vs laparoscopic rectal cancer surgery: a comparative study. Int J Colorectal Dis 32:241–248CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shiomi A, Kinugasa Y, Yamaguchi T et al (2016) Robot-assisted versus laparoscopic surgery for lower rectal cancer: the impact of visceral obesity on surgical outcomes. Int J Colorectal Dis 31:1701–1710CrossRefPubMedGoogle Scholar
  67. 67.
    Allemann P, Duvoisin C, Di Mare L et al (2016) Robotic-assisted surgery improves the quality of total mesorectal excision for rectal cancer compared to laparoscopy: results of a case-controlled analysis. World J Surg 40:1010–1016CrossRefPubMedGoogle Scholar
  68. 68.
    Ahmed J, Cao H, Panteleimonitis S et al (2017) Robotic vs laparoscopic rectal surgery in high-risk patients. Color Dis 19:1092–1099CrossRefGoogle Scholar
  69. 69.
    Huang Y-M, Huang YJ, Wei P-L (2017) Outcomes of robotic versus laparoscopic surgery for mid and low rectal cancer after neoadjuvant chemoradiation therapy and the effect of learning curve. Medicine Baltimore 96:e8171CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ielpo B, Duran H, Diaz E et al (2017) Robotic versus laparoscopic surgery for rectal cancer: a comparative study of clinical outcomes and costs. Int J Colorectal Dis 32:1423–1429CrossRefPubMedGoogle Scholar
  71. 71.
    Kim J, Baek S-J, Kang D-W et al (2017) Robotic resection is a good prognostic factor in rectal cancer compared with laparoscopic resection: long-term survival analysis using propensity score matching. Dis Colon Rectum 60:266–273PubMedGoogle Scholar
  72. 72.
    Kim HJ, Choi G-S, Park JS et al (2017) Selective lateral pelvic lymph node dissection: a comparative study of the robotic versus laparoscopic approach. Surg Endosc 32:2466–2473CrossRefPubMedGoogle Scholar
  73. 73.
    Silva-Velazco J, Dietz DW, Stocchi L et al (2017) Considering value in rectal cancer surgery: an analysis of costs and outcomes based on the open, laparoscopic, and robotic approach for proctectomy. Ann Surg 265:960–968CrossRefPubMedGoogle Scholar
  74. 74.
    Widmar M, Keskin M, Strombom P et al (2017) Lymph node yield in right colectomy for cancer: a comparison of open, laparoscopic and robotic approaches. Color Dis 19:888–894CrossRefGoogle Scholar
  75. 75.
    Kamali D, Omar K, Imam SZ et al (2017) Patient quality of life and short-term surgical outcomes between robotic and laparoscopic anterior resection for adenocarcinoma of the rectum. Tech Coloproctol 21:355–361CrossRefPubMedGoogle Scholar
  76. 76.
    Kamali D, Reddy A, Imam S et al (2017) Short-term surgical outcomes and patient quality of life between robotic and laparoscopic extralevator abdominoperineal excision for adenocarcinoma of the rectum. Ann R Coll Surg Engl 99:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shin JY (2012) Comparison of short-term surgical outcomes between a robotic colectomy and a laparoscopic colectomy during early experience. J Korean Soc Coloproctol 28:19–26CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Park JS, Choi G-S, Lim KH et al (2010) Robotic-assisted versus laparoscopic surgery for low rectal cancer: case-matched analysis of short-term outcomes. Ann Surg Oncol 17:3195–3202CrossRefPubMedGoogle Scholar
  79. 79.
    Park JS, Choi GS, Park SY et al (2012) Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg 99:1219–1226CrossRefPubMedGoogle Scholar
  80. 80.
    Park SY, Choi G-S, Park JS et al (2012) Short-term clinical outcome of robot-assisted intersphincteric resection for low rectal cancer: a retrospective comparison with conventional laparoscopy. Surg Endosc 27:48–55CrossRefPubMedGoogle Scholar
  81. 81.
    Park EJ, Kim CW, Cho MS et al (2014) Is the learning curve of robotic low anterior resection shorter than laparoscopic low anterior resection for rectal cancer? A comparative analysis of clinicopathologic outcomes between robotic and laparoscopic surgeries. Medicine US 93:1–11Google Scholar
  82. 82.
    Cho MS, Kim CW, Baek SJ et al (2015) Minimally invasive versus open total mesorectal excision for rectal cancer: long-term results from a case-matched study of 633 patients. Surg US 157:1121–1129CrossRefGoogle Scholar
  83. 83.
    Kim YS, Kim MJ, Park SC et al (2015) Robotic versus laparoscopic surgery for rectal cancer after preoperative chemoradiotherapy: case-matched study of short-term outcomes. Cancer Res Treat 48:225–231CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kim JC, Yu CS, Lim SB et al (2016) Comparative analysis focusing on surgical and early oncological outcomes of open, laparoscopy-assisted, and robot-assisted approaches in rectal cancer patients. Int J Colorectal Dis 31:1179–1187CrossRefPubMedGoogle Scholar
  85. 85.
    Lim DR, Bae SU, Hur H et al (2016) Long-term oncological outcomes of robotic versus laparoscopic total mesorectal excision of mid-low rectal cancer following neoadjuvant chemoradiation therapy. Surg Endosc Other Interv Tech 31:1728–1737CrossRefGoogle Scholar
  86. 86.
    Buonpane C, Efiong E, Hunsinger M et al (2017) Predictors of utilization and quality assessment in robotic rectal cancer resection: a review of the national cancer database. Am Surg 83:918–924PubMedGoogle Scholar
  87. 87.
    Levic K, Donatsky AM, Bulut O et al (2015) A comparative study of single-port laparoscopic surgery versus robotic-assisted laparoscopic surgery for rectal cancer. Surg Innov 22:368–375CrossRefPubMedGoogle Scholar
  88. 88.
    Serin KR, Gultekin FA, Batman B et al (2015) Robotic versus laparoscopic surgery for mid or low rectal cancer in male patients after neoadjuvant chemoradiation therapy: comparison of short-term outcomes. J Robot Surg 9:187–194CrossRefPubMedGoogle Scholar
  89. 89.
    Corbellini C, Biffi R, Luca F et al (2016) Open, laparoscopic, and robotic surgery for rectal cancer: medium-term comparative outcomes from a multicenter study. Tumori 102:414–421CrossRefPubMedGoogle Scholar
  90. 90.
    Feroci F, Vannucchi A, Pietro Bianchi P et al (2016) Total mesorectal excision for mid and low rectal cancer: laparoscopic vs robotic surgery. World J Gastroenterol 22:3602–3610CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Moghadamyeghaneh Z, Phelan M, Smith BR et al (2015) Outcomes of open, laparoscopic, and robotic abdominoperineal resections in patients with rectal cancer. Dis Colon Rectum 58:1123–1129CrossRefPubMedGoogle Scholar
  92. 92.
    Mirkin KA, Kulaylat AS, Hollenbeak CS et al (2017) Robotic versus laparoscopic colectomy for stage I-III colon cancer: oncologic and long-term survival outcomes. Surg Endosc 32:2894–2901CrossRefPubMedGoogle Scholar
  93. 93.
    Allaix ME, Degiuli M, Arezzo A et al (2013) Does conversion affect short-term and oncologic outcomes after laparoscopy for colorectal cancer? Surg Endosc Other Interv Tech 27:4596–4607CrossRefGoogle Scholar
  94. 94.
    Allaix ME, Furnée EJB, Mistrangelo M et al (2016) Conversion of laparoscopic colorectal resection for cancer: what is the impact on short-term outcomes and survival? World J Gastroenterol 22:8304CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Scheidbach H, Garlipp B, Oberländer H et al (2011) Conversion in laparoscopic colorectal cancer surgery: impact on short- and long-term outcome. J Laparoendosc Adv Surg Tech 21:923–927CrossRefGoogle Scholar
  96. 96.
    Moghadamyeghaneh Z, Masoomi H, Mills SD et al (2014) Outcomes of conversion of laparoscopic colorectal surgery to open surgery. JSLS J Soc Laparoendosc Surg 18(e2014):00230Google Scholar
  97. 97.
    de Neree Tot Babberich MPM, van Groningen JT, Dekker E et al (2018) Laparoscopic conversion in colorectal cancer surgery; is there any improvement over time at a population level? Surg Endosc Other Interv Tech 32:1–13Google Scholar
  98. 98.
    Spinoglio G, Marano A, Priora F, et al. (2014) History of robotic surgery. Spinoglio G in collaboration with Marano A, Formisano G In: Robotic surgery: current applications and new trends, Springer, Italia, pp 1–12Google Scholar
  99. 99.
    Szold A, Bergamaschi R, Broeders I et al (2015) European association of endoscopic surgeons (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc Other Interv Tech 29:253–288CrossRefGoogle Scholar
  100. 100.
    Teljeur C, O’Neill M, Moran PS et al (2014) Economic evaluation of robot-assisted hysterectomy: a cost-minimisation analysis. BJOG An Int J Obstet Gynaecol 121:1546–1553CrossRefGoogle Scholar
  101. 101.
    Lin S (2011) Meta-analysis of robotic and laparoscopic surgery for treatment of rectal cancer. World J Gastroenterol 17:5214–5220CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Memon S, Heriot AG, Murphy DG et al (2012) Robotic versus laparoscopic proctectomy for rectal cancer: a meta-analysis. Ann Surg Oncol 19:2095–2101CrossRefPubMedGoogle Scholar
  103. 103.
    Xiong B, Ma L, Zhang C et al (2014) Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis. J Surg Res 188:404–414CrossRefPubMedGoogle Scholar
  104. 104.
    Lee SH, Lim S, Kim JH et al (2015) Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Ann Surg Treat Res 89:190–201CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang Y, Zhao G-H, Yang H et al (2016) A pooled analysis of robotic versus laparoscopic surgery for total mesorectal excision for rectal cancer. Surg Laparosc Endosc Percutan Tech 26:259–264CrossRefPubMedGoogle Scholar
  106. 106.
    Sun Y, Xu H, Li Z et al (2016) Robotic versus laparoscopic low anterior resection for rectal cancer: a meta-analysis. World J Surg Oncol 14:1–8CrossRefGoogle Scholar
  107. 107.
    Li X, Wang T, Yao L et al (2017) The safety and effectiveness of robot-assisted versus laparoscopic TME in patients with rectal cancer. Medicine US 96:e7585CrossRefGoogle Scholar
  108. 108.
    Prete FP, Pezzolla A, Prete F et al (2017) Robotic versus laparoscopic minimally invasive surgery for rectal cancer. Ann Surg 267:1–13Google Scholar
  109. 109.
    Cui Y, Li C, Xu Z et al (2017) Robot-assisted versus conventional laparoscopic operation in anus-preserving rectal cancer: a meta-analysis. Ther Clin Risk Manag 13:1247–1257CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ortiz-Oshiro E, Sánchez-Egido I, Moreno-Sierra J et al (2012) Robotic assistance may reduce conversion to open in rectal carcinoma laparoscopic surgery: systematic review and meta-analysis. Int J Med Robot Comput Assist Surg 8:360–370CrossRefGoogle Scholar
  111. 111.
    Najarian S, Fallahnezhad M, Afshari E (2011) Advances in medical robotic systems with specific applications in surgery-a review. J Med Eng Technol 35:19–33CrossRefPubMedGoogle Scholar
  112. 112.
    Banaszkiewicz Z, Cierzniakowska K, Tojek K et al (2017) Surgical site infection among patients after colorectal cancer surgery. Pol Przegl Chir 89:9–15CrossRefPubMedGoogle Scholar
  113. 113.
    Rawlinson A, Kang P, Evans J et al (2011) A systematic review of enhanced recovery protocols in colorectal surgery. Ann R Coll Surg Engl 93:583–588CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Trastulli S, Cirocchi R, Desiderio J et al (2015) Robotic versus laparoscopic approach in colonic resections for cancer and Benign diseases: systematic review and meta-analysis. PLoS ONE 10:1–27CrossRefGoogle Scholar
  115. 115.
    El Nakeeb A, Fikry A, El Metwally T et al (2009) Early oral feeding in patients undergoing elective colonic anastomosis. Int J Surg 7:206–209CrossRefPubMedGoogle Scholar
  116. 116.
    Fujii T, Morita H, Sutoh T et al (2014) Benefit of oral feeding as early as one day after elective surgery for colorectal cancer: oral feeding on first versus second postoperative day. Int Surg 99:211–215CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Wang Z, Zhong B, Xiang J et al (2013) Effect of early oral enteral nutrition on clinical outcomes after colorectal cancer surgery. Zhonghua Wei Chang Wai Ke Za Zhi 16:735–738PubMedGoogle Scholar
  118. 118.
    Di Fronzo LA, Cymerman J, O’Connell TX (1999) Factors affecting early postoperative feeding following elective open colon resection. Arch Surg 134:941–946CrossRefPubMedGoogle Scholar
  119. 119.
    Yang Y, Wang F, Zhang P et al (2012) Robot-assisted versus conventional laparoscopic surgery for colorectal disease, focusing on rectal cancer: a meta-analysis. Ann Surg Oncol 19:3727–3736CrossRefPubMedGoogle Scholar
  120. 120.
    Lim S, Kim JH, Baek S-J et al (2016) Comparison of perioperative and short-term outcomes between robotic and conventional laparoscopic surgery for colonic cancer: a systematic review and meta-analysis. Ann Surg Treat Res 90:328–339CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2019

Authors and Affiliations

  • Ka Ting Ng
    • 1
    Email author
  • Azlan Kok Vui Tsia
    • 2
  • Vanessa Yu Ling Chong
    • 2
  1. 1.Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of SurgeryInternational Medical UniversityKuala LumpurMalaysia

Personalised recommendations