World Journal of Surgery

, Volume 42, Issue 5, pp 1514–1522 | Cite as

The Clinical Implications of Liver Resection Margin Size in Patients with Hepatocellular Carcinoma in Terms of Positron Emission Tomography Positivity

  • Jae Hyun Park
  • Dong Hwi Kim
  • Sung Hoon KimEmail author
  • Moon Young Kim
  • Soon Koo Baik
  • In Su Hong
Original Scientific Report



The positivity of positron emission tomography (PET) in hepatocellular carcinoma (HCC) correlates with aggressive tumor factors and poor survival. Adequate resection margin size is still a topic of debate. We analyzed the clinical implications of resection margin size in patients with HCC in terms of PET positivity.


We retrospectively reviewed the medical records of 92 patients who underwent liver resection from March 2012 to October 2015. We investigated prognostic factors for recurrence and survival. We analyzed the correlation of resection margin size and PET positivity. Resection margins were classified as less than 1 cm and more than 1 cm.


Twenty six (31.3%) patients had PET-positive HCC. Multivariate analysis showed PET, satellite nodules, microvessel invasion, and multicentric occurrence were significant prognostic factors for HCC recurrence. Multivariate analysis also showed satellite nodules and microscopic portal vein invasion were significant prognostic factors for overall survival (OS). Resection margin size did not affect disease-free survival (DFS) (p = 0.681) or OS (p = 0.301) in patients with PET-negative HCC, but showed a difference in DFS [<1 cm at 11 months vs. ≥1 cm at 41 months (p = 0.188)] and OS [<1 cm at 28 months vs. ≥1 cm at 48 months (p < 0.001)] in patients with PET-positive HCC.


PET has low sensitivity for HCC. However, it is useful to predict treatment outcomes after liver resection or liver transplantation for HCC. Although the extent of liver resection must be decided based on liver function, a resection margin size >1 cm may improve DFS and OS in patients with PET-positive HCC.



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2014R1A1A1007901).


  1. 1.
    Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. The Lancet 379(1245–125):5Google Scholar
  2. 2.
    European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943Google Scholar
  3. 3.
    Korean Liver Cancer Study Group (KLCSG), National Cancer Center, Korea (NCC) (2015) 2014 KLCSG-NCC Korea practice guideline for the management of hepatocellular carcinoma. Gut Liver 9:267–317Google Scholar
  4. 4.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bruix J, Sherman M, Llovet JM et al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J Hepatol 35:421–430CrossRefPubMedGoogle Scholar
  6. 6.
    Kokudo ND, Hasegawa K, Akahane M et al (2015) Evidence-based clinical practice guidelines for hepatocellular carcinoma: the Japan society of hepatology 2013 update (3rd JSH-HCC Guidelines). Hepatol Res 45:123–127CrossRefGoogle Scholar
  7. 7.
    Omata M, Lesmana LA, Tateishi R et al (2010) Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 4(439–47):4Google Scholar
  8. 8.
    Yu SJ (2016) A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010–2016. Clin Mol Hepatol 22:7–17CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Poon RTP, Sheung TF, Chung ML et al (2002) Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation. Ann Surg 235:373–382CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Proneth A, Zeman F, Schlitt HJ et al (2014) Is resection or transplantation the ideal treatment in patients with hepatocellular carcinoma in cirrhosis if both are possible? A systematic review and metaanalysis. Ann Surg Oncol 21:3096–3107CrossRefPubMedGoogle Scholar
  11. 11.
    Bhangui P, Allard MA, Vibert E et al (2016) Salvage versus primary liver transplantation for early hepatocellular carcinoma: Do both strategies yield similar outcomes? Ann Surg 264:155–163CrossRefPubMedGoogle Scholar
  12. 12.
    Chan DL, Alzahrani NA, Morris DL et al (2014) Systematic review of efficacy and outcomes of salvage liver transplantation after primary hepatic resection for hepatocellular carcinoma. J Gastroenterol Hepatol 29:31–41CrossRefPubMedGoogle Scholar
  13. 13.
    Agrawal S, Belghiti J (2011) Oncologic resection for malignant tumors of the liver. Ann Surg 253:656–665CrossRefPubMedGoogle Scholar
  14. 14.
    Shi M, Guo RP, Lin XJ et al (2007) Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. Ann Surg 245:36–43CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Park JW, Ji HK, Seok KK et al (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49:1912–1921CrossRefPubMedGoogle Scholar
  16. 16.
    Kobayashi T, Aikata H, Honda F et al (2016) Preoperative fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography for prediction of microvascular invasion in small hepatocellular carcinoma. J Comput Assist Tomogr 40:524–530CrossRefPubMedGoogle Scholar
  17. 17.
    Asman Y, Evenson AR, Even-Sapir E et al (2015) [18F] fludeoxyglucose positron emission tomography and computed tomography as a prognostic tool before liver transplantation, resection, and loco-ablative therapies for hepatocellular carcinoma. Liver Transp 21:572–580CrossRefGoogle Scholar
  18. 18.
    Ahn SG, Jeon TJ, Lee SD et al (2013) A survival benefit of major hepatectomy for hepatocellular carcinoma identified by preoperative [18F] fluorodeoxyglucose positron emission tomography in patients with well-preserved hepatic function Eur. J Surg Oncol 39:964–973CrossRefGoogle Scholar
  19. 19.
    Lee HW, Suh K-S (2016) Liver transplantation for advanced hepatocellular carcinoma. Clin Mol Hepatol 22(309–31):8Google Scholar
  20. 20.
    Eguchi S, Kanematsu T, Arii S et al (2008) Comparison of the outcomes between an anatomical subsegmentectomy and a non-anatomical minor hepatectomy for single hepatocellular carcinomas based on a Japanese nationwide survey. Surgery 143:469–475CrossRefPubMedGoogle Scholar
  21. 21.
    Makuuchi M (2013) Surgical treatment for HCC—special reference to anatomical resection. Int J Surg 11:S47–S49CrossRefPubMedGoogle Scholar
  22. 22.
    Castilla-Lièvre MA, Franco D, Gervais P et al (2016) Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 43:852–859CrossRefPubMedGoogle Scholar
  23. 23.
    Rodríguez-Perálvarez M, Luong TV, Andreana L et al (2013) A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability. Ann Surg Oncol 20(325–33):9Google Scholar
  24. 24.
    Kim BK, Kang WJ, Kim JK et al (2011) 18F-fluorodeoxyglucose uptake on positron emission tomography as a prognostic predictor in locally advanced hepatocellular carcinoma. Cancer 117:4779–4787CrossRefPubMedGoogle Scholar
  25. 25.
    Bailly M, Venel Y, Orain I et al (2016) 18F-FDG PET in liver transplantation setting of hepatocellular carcinoma predicting histology? Clin Nucl Med 41:e126–e129CrossRefPubMedGoogle Scholar
  26. 26.
    Hyun SH, Eo JS, Lee JW et al (2016) Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with barcelona clinic liver cancer stages 0 and A hepatocellular carcinomas: a multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging 43:1638–1645CrossRefPubMedGoogle Scholar
  27. 27.
    Min JH, Kim YK, Lim S et al (2015) Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: impact of intra-tumoral fat detected on chemical-shift images. Eur J Radiol 84:1036–1043CrossRefPubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2017

Authors and Affiliations

  • Jae Hyun Park
    • 1
  • Dong Hwi Kim
    • 1
  • Sung Hoon Kim
    • 1
    Email author
  • Moon Young Kim
    • 2
  • Soon Koo Baik
    • 2
  • In Su Hong
    • 3
  1. 1.Department of Surgery, Wonju Severance Christian HospitalYonsei University Wonju College of MedicineWonjuKorea
  2. 2.Department of Internal medicine, Wonju Severance Christian HospitalYonsei University Wonju College of MedicineWonjuKorea
  3. 3.Department of Radiology, Wonju Severance Christian HospitalYonsei University Wonju College of MedicineWonjuKorea

Personalised recommendations