World Journal of Surgery

, Volume 40, Issue 10, pp 2550–2557 | Cite as

30 Years of Robotic Surgery

  • Tiago Leal GhezziEmail author
  • Oly Campos Corleta
Surgical History


The idea of reproducing himself with the use of a mechanical robot structure has been in man’s imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first “robot surgeon” used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of “master–slave” robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci® robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.


Robotic Surgery Robotic Platform Defense Advance Research Project Agency Physiologic Tremor Defense Advance Research Project Agency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goertz RC (1952) Fundamentals of general purpose remote manipulators. Nucleonics 1001:36–42Google Scholar
  2. 2.
    Goertz RC (1953) Remote-control manipulator. US Patent 2632574, Washington, DC: US Patent OfficeGoogle Scholar
  3. 3.
    Devol GC (1961) Programmed article transfer. US Patent 2988237, Washington, DC: US Patent OfficeGoogle Scholar
  4. 4.
    Engelberger J (1989) Robots in service. MIT Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Capek K (1923) The meaning of R.U.R. Saturday Rev 136:79Google Scholar
  6. 6.
    Hockstein NG, Gourtin CG, Faust RA (2007) History of robots: from science fiction to surgical robotics. J Robot Surg 1:113–118CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Robotics Today, Robotics Institute of America (RIA) News, Spring, 1980, p 7Google Scholar
  8. 8.
    Abdul-Muhsin H, Patel V (2014) History of robotic surgery. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 3–8CrossRefGoogle Scholar
  9. 9.
    Kwoh YS, Hou J, Jonckheere EA et al (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160CrossRefPubMedGoogle Scholar
  10. 10.
    Harris SJ, Arambula-Cosio F, Mei Q et al (1997) The Probot—an active robot for procedures. Proc Inst Mech Eng H 211:317–325CrossRefPubMedGoogle Scholar
  11. 11.
    Davies BL, Hibber RD, Ng WS et al (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 205:35–38CrossRefGoogle Scholar
  12. 12.
    Fischer SS, McGreevy MM, Humphries J et al (1987) Virtual environmental display system. In: Crow F, Pizer S (eds) Proceedings of the workshop on interactive 3-D graphics, Chappel Hill, pp 1–12Google Scholar
  13. 13.
    Green PS, Satava RM, Hill JR et al (1992) Telepresence: advanced teleoperator technology for minimally invasive surgery. Surg Endosc 6:90CrossRefGoogle Scholar
  14. 14.
    Parekattil SJ, Moran ME (2010) Robotic instrumentation: evolution and microsurgical applications. Indian J Urol 26(3):395–403CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Satava RM (2003) Robotic surgery: from past to future: a personal journey. Surg Clin North Am 83:1491–1500CrossRefPubMedGoogle Scholar
  16. 16.
    Bowersox JC, Shah A, Jensen J et al (1996) Vascular applications of telepresence surgery: initial feasibility studies in swine. J Vasc Surg 23(2):281–287CrossRefPubMedGoogle Scholar
  17. 17.
    Unger SW, Unger HM, Bass RT (1994) AESOP robotic arm. Surg Endosc 8:1131CrossRefPubMedGoogle Scholar
  18. 18.
    Ewing DR, Pigazzi A, Wang Y et al (2004) Robots in the operating room: the history. Semin Laparosc Surg 11:63–71PubMedGoogle Scholar
  19. 19.
    Sackier JM, Wang Y (1994) Robotically assisted laparoscopic surgery. From concept to development. Surg Endosc 8:63–66CrossRefPubMedGoogle Scholar
  20. 20.
    Baæa I, Schultz C, Grzybowski L et al (1999) Voice-controlled robotic arm in laparoscopic surgery. Croat Med J 40(3):409–412Google Scholar
  21. 21.
    Falcone T, Goldberg J, Garcia-Ruiz A et al (1999) Full robotic for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A 9:107–113CrossRefPubMedGoogle Scholar
  22. 22.
    Hashizume M, Konishi K, Tsutsumi N et al (2002) A new era of robotic surgery assisted by a computer-enhanced surgical system. Surgery 131(1l):S330–S333CrossRefPubMedGoogle Scholar
  23. 23.
    Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380CrossRefPubMedGoogle Scholar
  24. 24.
    Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188(4A):19S–26SCrossRefPubMedGoogle Scholar
  25. 25.
    Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12(8):1091CrossRefPubMedGoogle Scholar
  26. 26.
    Hagen ME, Stein H, Curet MJ (2014) Introduction to the robotic system. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 9–16CrossRefGoogle Scholar
  27. 27.
    Hashizume M, Sugimachi K (2003) Robot-assisted gastric surgery. Surg Clin N Am 83:1429–1444CrossRefPubMedGoogle Scholar
  28. 28.
    US Food and Drug Administration (2000) 510 (k) clearances. Acessed 30 Oct 2015
  29. 29.
    Binder J, Kramer W (2001) Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87(4):408–410CrossRefPubMedGoogle Scholar
  30. 30.
    Ficarra E, Cavalleri S, Novara G et al (2007) Evidence from robot-assisted laparoscopic radical prostatectomy: a systematic review. Eur Urol 51:45–56CrossRefPubMedGoogle Scholar
  31. 31.
    Rosero EB, Kho KA, Joshi GP et al (2013) Comparison of robotic and laparoscopic hysterectomy for benign disease. Obstet Gynecol 122(4):778–786CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tekkis PP, Senagore AJ, Delaney CP et al (2005) Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 242:83–91CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Taffinder N, Smith SGT, Huber J et al (1999) The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons. Surg Endosc 13:1087–1092CrossRefPubMedGoogle Scholar
  34. 34.
    Kroh M, El-Hayek K, Rosenblatt S et al (2011) First human surgery with a novel single port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc 25:3566–3573CrossRefPubMedGoogle Scholar
  35. 35.
    Hellan M, Spinoglio G, Pigazzi A et al (2014) The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc 28:1695–1702CrossRefPubMedGoogle Scholar
  36. 36.
    Aslee LS, Scott EM, Krivak TC et al (2013) Dual-console robotic surgery: a new teaching paradigm. J Robot Surg 7(2):113–118CrossRefGoogle Scholar
  37. 37.
    Bhayani SB, Snow DC (2008) Novel dynamic information integration during da Vinci robotic partial nephrectomy and radical. J Robot Surg 2:67–69CrossRefPubMedGoogle Scholar
  38. 38.
    Atallah S, Martin-Perez B, Pinan J et al (2014) Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol 18(11):1047–1053CrossRefPubMedGoogle Scholar
  39. 39.
    Cadière GB, Himpens J, Vetruyen M et al (1999) The world´s first obesity surgery performed by a surgeon at a distance. Obes Surg 9:206–209CrossRefPubMedGoogle Scholar
  40. 40.
    Cadière GB, Himpens J, Vertruyen M et al (2001) Evaluation of telesurgical (robotic) NISSEN fundoplication. Surg Endosc 15:918–923CrossRefPubMedGoogle Scholar
  41. 41.
    Horgan S, Vanuno D (2001) Robots in laparoscopic surgery. J Laparoendosc Adv Surg Tech A 11:415–419CrossRefPubMedGoogle Scholar
  42. 42.
    Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784CrossRefPubMedGoogle Scholar
  43. 43.
    Hashizume M, Shimada M, Tomikawa M et al (2002) Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16:1187–1191CrossRefPubMedGoogle Scholar
  44. 44.
    Weber P, Merola S, Wasielewski A et al (2002) Telerobotic-assisted laparoscopic right and sigmoid colectomies for benign disease. Dis Colon Rectum 45(12):1689–1696CrossRefPubMedGoogle Scholar
  45. 45.
    Melvin WS, Needleman BJ, Krause KR et al (2002) Computer-enhanced robotic telesurgery. Initial experience in foregut surgery. Surg Endosc 16:1790–1792CrossRefPubMedGoogle Scholar
  46. 46.
    Ballantyne GH, Hourmont K, Wasielewski A (2003) Telerobotic laparoscopic repair of incisional ventral hernias using intraperitoneal prosthetic mesh. JSLS 7(1):7–14PubMedPubMedCentralGoogle Scholar
  47. 47.
    Horgan S, Berger RA, Elli EF et al (2003) Robotic-assisted minimally invasive transhiatal esophagectomy. Am Surg 69(7):624–626PubMedGoogle Scholar
  48. 48.
    Kang S-W, Jeong JJ, Yun J-S et al (2009) Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 23(11):2399–2406CrossRefPubMedGoogle Scholar
  49. 49.
    Luca F, Valvo M, Ghezzi TL et al (2013) Impact of robotic surgery on sexual and urinary functions after fully robotic nerve-sparing total mesorectal surgery excision for rectal cancer. Ann Surg 257(4):672–678CrossRefPubMedGoogle Scholar
  50. 50.
    Pigazzi A (2015) Results of robotic versus laparoscopic resection for rectal cancer: ROLLAR study. ASCRS Annual Scientific Meeting, June 1st 2015, BostonGoogle Scholar
  51. 51.
    Szold A, Bergamaschi R, Broeders I et al (2008) European association of endoscopic (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc 29:253–288CrossRefGoogle Scholar
  52. 52.
    Lee SH, Lim S, Kim JH et al (2015) Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Ann Surg Treat Res 89(4):190–201CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Buchs NC, Pugin F, Volonté F et al (2013) Learning tools and simulation in robotic surgery: state of the art. World J Surg 37:2812–2819. doi: 10.1007/s00268-013-2065-y CrossRefPubMedGoogle Scholar
  54. 54.
    Lucas SM, Sundara CP (2012) The MIMIC virtual reality trainer: stepping into three-dimensional, binocular, robotic simulation. In: Patel HRH, Joseph JV (eds) Simulation training in laparoscopy and robotic surgery. Springer-Verlag, London, pp 49–57CrossRefGoogle Scholar
  55. 55.
  56. 56.
    Robotics and Mechatronics Center. MIRO/KineMedic. Acessed 30 Oct 2015
  57. 57.
    New European Surgical Academy. Telelap Alf-x. Acessed 30 Oct 2015
  58. 58.
    Titan Medical Inc.. Sport™ Surgical System. Acessed 30 Oct 2015
  59. 59.
    Dolghi O, Strabala KW, Wortman TD et al (2011) Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc 25:3453–3458CrossRefPubMedGoogle Scholar
  60. 60.
    Abboudi H, Khan MS, Aboumarzouk O et al (2013) Current status of validation for robotic surgery simulators: a systematic review. BJU Int 111(2):194–205CrossRefPubMedGoogle Scholar
  61. 61.
    Stegemann AP, Ahmed K, Syed JR et al (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled Trial for validation of a simulation-based curriculum. Urology 81:767–774CrossRefPubMedGoogle Scholar
  62. 62.
    Brunaud L, Reibel N, Ayav A (2011) Pancreatic, endocrine and bariatric surgery: the role of robot-assisted approaches. J Visc Surg 148(5):e47–e53CrossRefPubMedGoogle Scholar
  63. 63.
    Terashima M, Tokunaga M, Tanizawa Y et al (2015) Robotic surgery for gastric cancer. Gastric Cancer 18(3):449–457CrossRefPubMedGoogle Scholar
  64. 64.
    Wilson EB, Bagshahi H, Woodruff VD (2014) Overview of general advantages, limitations, and strategies. In: Kim CH (ed) Robotics in general surgery. Springer, New York, pp 17–22CrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2016

Authors and Affiliations

  1. 1.Hospital de Clínicas de Porto Alegre, Colorectal SurgeryPorto AlegreBrazil
  2. 2.Hospital de Clínicas de Porto Alegre, General SurgeryPorto AlegreBrazil

Personalised recommendations