Advertisement

World Journal of Surgery

, Volume 39, Issue 9, pp 2243–2252 | Cite as

Naso-enteric Tube Placement: A Review of Methods to Confirm Tip Location, Global Applicability and Requirements

  • S. A. Milsom
  • J. A. SweetingEmail author
  • H. Sheahan
  • E. Haemmerle
  • J. A. Windsor
Scientific Review

Abstract

Background

The insertion of a tube through the nose and into the stomach or beyond is a common clinical procedure for feeding and decompression. The safety, accuracy and reliability of tube insertion and methods used to confirm the location of the naso-enteric tube (NET) tip have not been systematically reviewed. The aim of this study is to review and compare these methods and determine their global applicability by end-user engagement.

Methods

A systematic literature review of four major databases was performed to identify all relevant studies. The methods for NET tip localization were then compared for their accuracy with reference to a gold standard method (radiography or endoscopy). The global applicability of the different methods was analysed using a house of quality matrix.

Results

After applying the inclusion and exclusion criteria, 76 articles were selected. Limitations were found to be associated with the 20 different methods described for NET tip localization. The method with the best combined sensitivity and specificity (where n > 1) was ultrasound/sonography, followed by external magnetic guidance, electromagnetic methods and then capnography/capnometry. The top three performance criteria that were considered most important for global applicability were cost per tube/disposable, success rate and cost for non-disposable components.

Conclusion

There is no ideal method for confirming NET tip localisation. While radiography (the gold standard used for comparison) and ultrasound were the most accurate methods, they are costly and not universally available. There remains the need to develop a low-cost, easy-use, accurate and reliable method for NET tip localization.

Keywords

Performance Criterion Gold Standard Method Newcastle Ottawa Quality Assessment Scale Stakeholder Requirement Language Suitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

268_2015_3077_MOESM1_ESM.docx (133 kb)
Supplementary material 1 (DOCX 118 kb)

References

  1. 1.
    Chernoff R (2006) An overview of tube feeding: from ancient times to the future. Nutr Clin Pract 21(4):408–410PubMedCrossRefGoogle Scholar
  2. 2.
    Kirby DF, Delegge MH, Fleming CR (1995) American gastroenterological association technical review on tube feeding for enteral nutrition. Gastroenterology 108(4):1282–1301PubMedCrossRefGoogle Scholar
  3. 3.
    Hodin R, Bordeianou L (2013) Nasogastric and nasoenteric tubes. UpToDate, Wolters Kluwer Health. Accessed 15 Jan 2014Google Scholar
  4. 4.
    Williams S, McDavid G (2012) Nasogastric tube errors. Casebook. 3 20:10–13Google Scholar
  5. 5.
    Koopmann MC, Kudsk KA, Szotkowski MJ et al (2011) A team-based protocol and electromagnetic technology eliminate feeding tube placement complications. Ann Surg 253(2):287–302PubMedCrossRefGoogle Scholar
  6. 6.
    Axelrod D, Kazmerski K, Iyer K (2006) Pediatric enteral nutrition. JPEN J Parenter Enteral Nutr 30(1 Suppl):S21–S26PubMedCrossRefGoogle Scholar
  7. 7.
    Genu PR, de Oliverira D, Vasconcellos RJ et al (2004) Inadvertent intracranial placement of a nasogastric tube in a patient with severe craniofacial trauma: a case report. J Oral Maxillofac Surg 62:1435–1438PubMedCrossRefGoogle Scholar
  8. 8.
    Huffman S, Pieper P, Jarczyk KS et al (2004) Methods to confirm feeding tube placement: application of research in practice. Pediatr Nurs 30(1):10–13PubMedGoogle Scholar
  9. 9.
    Institute ECRI (2006) Confirming feeding tube placement: old habits die hard. Pa Patient Saf Auth 3(4):23–30Google Scholar
  10. 10.
    Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wells GA, Shea B, O’Connell D et al (2014) The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute, OttawaGoogle Scholar
  12. 12.
    Hauser J, Clausig D (1988) The House of Quality. Harvard business review. Harvard College, Boston, p 16Google Scholar
  13. 13.
    House of Quality (QFD) Tutorial (2007–2010) [Interactive online tutorial]. http://www.qfdonline.com/qfd-tutorials/house-of-quality-tutorial. Accessed 7 Apr 2014
  14. 14.
    Joanna Briggs Institute (2010) Methods for determining the correct nasogastric tube placement after insertion in adults. Best Pract 14(1):1–4Google Scholar
  15. 15.
    Roberts S, Echeverria P, Gabriel SA (2007) Devices and techniques for bedside enteral feeding tube placement. Nutr Clin Pract 22(4):412–420PubMedCrossRefGoogle Scholar
  16. 16.
    Turgay AS, Khorshid L (2010) Effectiveness of the auscultatory and pH methods in predicting feeding tube placement. J Clin Nurs 19(11–12):1553–1559PubMedCrossRefGoogle Scholar
  17. 17.
    Page S (2012) How to check nasogastric tube placement. Clinical nursing skills and techniques. Accessed 12 Feb 2014Google Scholar
  18. 18.
    Freij RM, Mullett ST (1997) Inadvertent intracranial insertion of a nasogastric tube in a non-trauma patient. Emerg Med J 14:45–47CrossRefGoogle Scholar
  19. 19.
    Sparks DA, Chase DM, Coughlin LM et al (2011) Pulmonary complications of 9931 narrow-bore nasoenteric tubes during blind placement: a critical review. JPEN J Parenter Enteral Nutr 35(5):625–629PubMedCrossRefGoogle Scholar
  20. 20.
    Kearns PJ, Donna C (2001) A controlled comparison of traditional feeding tube verification methods to a bedside, electromagnetic technique. JPEN J Parenter Enteral Nutr 25(4):210–215PubMedCrossRefGoogle Scholar
  21. 21.
    Welch SK, Hanlon MD, Waits M et al (1994) Comparison of four bedside indicators used to predict duodenal feeding tube placement with radiography. JPEN J Parenter Enteral Nutr 18(6):525–530PubMedCrossRefGoogle Scholar
  22. 22.
    Gharpure V, Meert KL, Sarnaik AP et al (2000) Indicators of postpyloric feeding tube placement in children. Crit Care Med 28(8):2962–2966PubMedCrossRefGoogle Scholar
  23. 23.
    Metheny NA, Schnelker R, McGinnis J et al (2005) Indicators of tubesite during feedings. J Neurosci Nurs 37(6):320–325PubMedCrossRefGoogle Scholar
  24. 24.
    Westhus N (2004) Methods to test feeding tube placement in children. MCN Am J Matern Child Nurs 29(5):282–287 quiz 290–1PubMedCrossRefGoogle Scholar
  25. 25.
    Metheny N, Reed L, Berglund et al (1994) Visual characteristics of aspirates from feeding tubes as a method for predicting tube location. Nurs Res 43(5):282–287PubMedCrossRefGoogle Scholar
  26. 26.
    Botoman VA, Kirtland SH, Moss RL (1994) A randomized study of a pH sensor feeding tube vs a standard feeding tube in patients requiring enteral nutrition. JPEN J Parenter Enteral Nutr 18(2):154–158PubMedCrossRefGoogle Scholar
  27. 27.
    Dimand RJ, Veereman-Wauters G, Braner DA (1997) Bedside placement of pH-guided transpyloric small bowel feeding tubes in critically ill infants and small children. JPEN J Parenter Enteral Nutr 21(2):112–114PubMedCrossRefGoogle Scholar
  28. 28.
    Gatt M, MacFie J (2009) Bedside postpyloric feeding tube placement: a pilot series to validate this novel technique. Crit Care Med 37(2):523–527PubMedCrossRefGoogle Scholar
  29. 29.
    Taylor SJ, Clemente R (2005) Confirmation of nasogastric tube position by pH testing. J Hum Nutr Diet 18(5):371–375PubMedCrossRefGoogle Scholar
  30. 30.
    Gilbertson HR, Rogers EJ, Ukoumunne OC (2011) Determination of a practical pH cutoff level for reliable confirmation of nasogastric tube placement. JPEN J Parenter Enteral Nutr 35(4):540–544PubMedCrossRefGoogle Scholar
  31. 31.
    Stock A, Gilbertson H, Babl FE (2008) Confirming nasogastric tube position in the emergency department: pH testing is reliable. Pediatr Emerg Care 24(12):805–809PubMedCrossRefGoogle Scholar
  32. 32.
    Phang JS, Marsh WA, Barlows TG et al (2004) Determining feeding tube location by gastric and intestinal pH values. Nutr Clin Pract 19(6):640–644PubMedCrossRefGoogle Scholar
  33. 33.
    Ireton-Jones CS, Cheney J, Young R et al (1993) Does the use of an enteral feeding tube with a pH-sensitive tip facilitate enteral nutrition? J Burn Care Rehabil 14(2 Pt 1):215–217PubMedCrossRefGoogle Scholar
  34. 34.
    Metheny N, Williams P, Wiersema L et al (1989) Effectiveness of pH measurements in predicting feeding tube placement. Nurs Res 38(5):280–285PubMedCrossRefGoogle Scholar
  35. 35.
    Berry S, Orr M, Schoettker P et al (1994) Intestinal placement of pH-sensing nasointestinal feeding tubes. JPEN J Parenter Enteral Nutr 18(1):67–70PubMedCrossRefGoogle Scholar
  36. 36.
    Ellett ML, Croffie JM, Perkins SM (2005) Gastric tube placement in young children. Clin Nurs Res 14(3):238–253PubMedCrossRefGoogle Scholar
  37. 37.
    Elpern EH, Killeen K, Talla E et al (2007) Capnometry and air insufflation for assessing initial placement of gastric tubes. Am J Crit Care 16(6):544–549 quiz 550PubMedGoogle Scholar
  38. 38.
    Metheny N, McSweeney Wehrle MA et al (1990) Effectiveness of the auscultatory method in predicting feeding tube location. Nurs Res 39(5):262–267PubMedCrossRefGoogle Scholar
  39. 39.
    Neumann MJ, Meyer CT, DUtton JL et al (1995) Hold that X-ray: aspirate pH and auscultation prove enteral tube placement. J Clin Gastroenterol 20(4):293–295PubMedCrossRefGoogle Scholar
  40. 40.
    Hernandez-Socorro CR, Marin J, Ruiz-Santana S et al (1996) Bedside sonographic-guided versus blind nasoenteric feeding tube placement in critically ill patients. Crit Care Med 24(10):1690–1694PubMedCrossRefGoogle Scholar
  41. 41.
    Gilbert RT, Burns SM (2012) Increasing the safety of blind gastric tube placement in pediatric patients: the design and testing of a procedure using a carbon dioxide detection device. J Pediatr Nurs 27(5):528–532PubMedCrossRefGoogle Scholar
  42. 42.
    Sekino M, Yoshitoomi O, Nakamura T et al (2012) A new technique for post-pyloric feeding tube placement by palpation in lean critically ill patients. Anaesth Intensive Care 40(1):154–158PubMedGoogle Scholar
  43. 43.
    Holzinger U, Brunner R, Miehsler W et al (2011) Jejunal tube placement in critically ill patients: a prospective, randomized trial comparing the endoscopic technique with the electromagnetically visualized method. Crit Care Med 39(1):73–77PubMedCrossRefGoogle Scholar
  44. 44.
    Holzinger U, Kitzerberger W, Madl C, et al (2009) Prospective randomised comparison study of two methods of jejunal placement of enteral feeding tubes in critically ill patients: endoscopic versus electromagnetic visualised method. In European society of intensive care medicine. Springer, New YorkGoogle Scholar
  45. 45.
    Elpern EH, Killeen K, Talla E et al (2007) Capnometry and air insufflation for assessing initial placement of gastric tubes. Am J Crit Care 16(6):544–549PubMedGoogle Scholar
  46. 46.
    Meyer P, Henry M, Maury E et al (2009) Colorimetric capnography to ensure correct nasogastric tube position. J Crit Care 24(2):231–235PubMedCrossRefGoogle Scholar
  47. 47.
    Thomas BW, Falcone RE (1998) Confirmation of nasogastric tube placement by colorimetric indicator detection of carbon dioxide: a preliminary report. J Am Coll Nutr 17(2):195–197PubMedCrossRefGoogle Scholar
  48. 48.
    Burns SM, Carpenter R, Truwit JD (2001) Report on the development of a procedure to prevent placement of feeding tubes into the lungs using end-tidal CO2 measurements. Crit Care Med 29(5):936–939PubMedCrossRefGoogle Scholar
  49. 49.
    Ellett ML, Woodruff KA, Stewart DL (2007) The use of carbon dioxide monitoring to determine orogastric tube placement in premature infants: a pilot study. Gastroenterol Nurs 30(6):414–417PubMedCrossRefGoogle Scholar
  50. 50.
    Munera-Seeley V, Ochoa JB, Brown N et al (2008) Use of a colorimetric carbon dioxide sensor for nasoenteric feeding tube placement in critical care patients compared with clinical methods and radiography. Nutr Clin Pract 23(3):318–321PubMedCrossRefGoogle Scholar
  51. 51.
    Araujo-Preza CE, Melhado ME, Gutierrez FJ et al (2002) Use of capnometry to verify feeding tube placement. Crit Care Med 30(10):2255–2259PubMedCrossRefGoogle Scholar
  52. 52.
    Keidan I, Gallagher TJ (2000) Electrocardiogram-guided placement of enteral feeding tubes. Crit Care Med 28(7):2631–2633PubMedCrossRefGoogle Scholar
  53. 53.
    Levy H, Hayes J, Boivin M et al (2004) Transpyloric feeding tube placement in critically ill patients using electromyogram and erythromycin infusion. Chest 125(2):587–591PubMedCrossRefGoogle Scholar
  54. 54.
    Kline AM, Sorce L, Sullivan C et al (2011) Use of a noninvasive electromagnetic device to place transpyloric feeding tubes in critically ill children. Am J Crit Care 20(6):453–459PubMedCrossRefGoogle Scholar
  55. 55.
    Powers J, Luebbehusen M, Spitzer T et al (2011) Verification of an electromagnetic placement device compared with abdominal radiograph to predict accuracy of feeding tube placement. JPEN J Parenter Enteral Nutr 35(4):535–539PubMedCrossRefGoogle Scholar
  56. 56.
    Dolan AM, O’Hanlon C, O’Rourke J (2012) An evaluation of the Cortrak enteral access system in our intensive care. Ir Med J 105(5):153–154PubMedGoogle Scholar
  57. 57.
    Windle EM, Beddow D, Hall E et al (2010) Implementation of an electromagnetic imaging system to facilitate nasogastric and post-pyloric feeding tube placement in patients with and without critical illness. J Hum Nutr Diet 23(1):61–68PubMedCrossRefGoogle Scholar
  58. 58.
    Mathus-Vliegen EM, Duflou A, Spanier MB et al (2010) Nasoenteral feeding tube placement by nurses using an electromagnetic guidance system (with video). Gastrointest Endosc 71(4):728–736PubMedCrossRefGoogle Scholar
  59. 59.
    Gabriel SA, Ackermann RJ (2004) Placement of nasoenteral feeding tubes using external magnetic guidance. JPEN J Parenter Enteral Nutr 28(2):119–122PubMedCrossRefGoogle Scholar
  60. 60.
    Ozdemir B, Frost M, Hayes J et al (2000) Placement of nasoenteral feeding tubes using magnetic guidance: retesting a new technique. J Am Coll Nutr 19(4):446–451PubMedCrossRefGoogle Scholar
  61. 61.
    Boivin M, Levy H, Hayes J (2000) A multicenter, prospective study of the placement of transpyloric feeding tubes with assistance of a magnetic device. The magnet-guided enteral feeding tube study group. JPEN J Parenter Enteral Nutr 24(5):304–307PubMedCrossRefGoogle Scholar
  62. 62.
    Gabriel SA, Ackermann RJ, Castresana MR (1997) A new technique for placement of nasoenteral feeding tubes using external magnetic guidance. Crit Care Med 25(4):641–645PubMedCrossRefGoogle Scholar
  63. 63.
    Rulli F, Galata G, Villa M et al (2007) A simple indicator of correct nasogastric suction tube placement in children and adults. Endoscopy 39(Suppl 1):E237–E238PubMedCrossRefGoogle Scholar
  64. 64.
    Gubler C, Bauerfeind P, Vavricka et al (2006) Bedside sonographic control for positioning enteral feeding tubes: a controlled study in intensive care unit patients. Endoscopy 38(12):1256–1260PubMedCrossRefGoogle Scholar
  65. 65.
    Greenberg M, Bejar R, Asser S (1993) Confirmation of transpyloric feeding tube placement by ultrasonography. J Pediatr 122(3):413–415PubMedCrossRefGoogle Scholar
  66. 66.
    Kim HM, So BH, Jeong WJ et al (2012) The effectiveness of ultrasonography in verifying the placement of a nasogastric tube in patients with low consciousness at an emergency center. Scand J Trauma Resusc Emerg Med 20:38PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Slagt C, Innes R, Bihari D et al (2004) A novel method for insertion of post-pyloric feeding tubes at the bedside without endoscopic or fluoroscopic assistance: a prospective study. Intensive Care Med 30(1):103–107PubMedCrossRefGoogle Scholar
  68. 68.
    Young RJ, Chapman MJ, Fraser R et al (2005) A novel technique for post-pyloric feeding tube placement in critically ill patients: a pilot study. Anaesth Intensive Care 33(2):229–234PubMedGoogle Scholar
  69. 69.
    Ward MM, McEwen AM, Robbins PM et al (2009) A simple aspiration test to determine the accuracy of oesophageal placement of fine-bore feeding tubes. Intensive Care Med 35(4):722–724PubMedCrossRefGoogle Scholar
  70. 70.
    Karmally Z, Cyron M, Fowler K, et al (2011) Electromagnetic guided feeding tube insertion: enhancing patient safety. In: Abstract 264, t.S.o.C.C.M. conference, San DiegoGoogle Scholar
  71. 71.
    Elliot S, Ahmed SM, Mallick A (2010) Electromagnetic sensor guided nasojejunal tube placement in critically ill patients, In: E-poster. European society of intensive care medicine. Springer, New YorkGoogle Scholar
  72. 72.
    Mathus-Vliegan E, Ramali M, Singels L, et al (2009) Feasibility and safety of the placement of nasoduodenal feeding tubes by nurses with the assistance of an electromagnetic guidance system (Cortrak). In: American society for gastrointestinal endoscopy. Amsterdam Academic Medical Center Digestive Disease Week, Amsterdam, NetherlandsGoogle Scholar
  73. 73.
    Gabriel S, Sabry A, Walter H (1998) Guiding nasoenteral feeding tubes into the distal duodenum with magnets: results from 161 intubations. In: 27th educational and scientific symposium, S.o.C.C. Medicine. San Antonio, Texas, p 89AGoogle Scholar
  74. 74.
    Tobin RW, Gonzales AJ, Golden RN et al (2000) Magnetic detection to position human nasogastric tubes. Biomed Instrum Technol 34(6):432–436PubMedGoogle Scholar
  75. 75.
    Gabriel SA, McDaniel B, Ashley DW et al (2001) Magnetically guided nasoenteral feeding tubes: a new technique. Am Surg 67(6):544–548PubMedGoogle Scholar
  76. 76.
    Heiselman DE, Vidovich RR, Milkovich G et al (1993) Nasointestinal tube placement with a pH sensor feeding tube. JPEN J Parenter Enteral Nutr 17(6):562–565PubMedCrossRefGoogle Scholar
  77. 77.
    Bercik P, Schlageter V, Mauro M et al (2005) Noninvasive verification of nasogastric tube placement using a magnet-tracking system: a pilot study in healthy subjects. JPEN J Parenter Enteral Nutr 29(4):305–310PubMedCrossRefGoogle Scholar
  78. 78.
    Harrison AM, Clay B, Grant MJ et al (1997) Nonradiographic assessment of enteral feeding tube position. Crit Care Med 25(12):2055–2059PubMedCrossRefGoogle Scholar
  79. 79.
    Metheny NA, Stewart BJ, Smith L et al (1999) pH and concentration of bilirubin in feeding tube aspirates as predictors of tube placement. Nurs Res 48(4):189–197PubMedCrossRefGoogle Scholar
  80. 80.
    Metheny NA, Stewart BJ, Smith L et al (1997) pH and concentrations of pepsin and trypsin in feeding tube aspirates as predictors of tube placement. JPEN J Parenter Enteral Nutr 21(5):279–285PubMedCrossRefGoogle Scholar
  81. 81.
    Jimenez EJ, Ugo PJ, Trottier SJ (1998) Placement of nasointestinal pH-sensing feeding tube: a prospective evaluation. S.o.C.C. Medicine, San Antonio, p 89Google Scholar
  82. 82.
    Krafte-Jacobs B, Persinger M, Carver J et al (1996) Rapid placement of transpyloric feeding tubes: a comparison of pH-assisted and standard insertion techniques in children. Pediatrics 98(2 Pt 1):242–248PubMedGoogle Scholar
  83. 83.
    Berger MM, Werner D, Revelly JP et al (2003) Serum paracetamol concentration: an alternative to X-rays to determine feeding tube location in the critically ill. JPEN J Parenter Enteral Nutr 27(2):151–155PubMedCrossRefGoogle Scholar
  84. 84.
    Rivera R, Campana J, Hamilton C et al (2011) Small bowel feeding tube placement using an electromagnetic tube placement device: accuracy of tip location. JPEN J Parenter Enteral Nutr 35(5):636–642PubMedCrossRefGoogle Scholar
  85. 85.
    Octobe TW, Hardart GE (2009) Successful placement of postpyloric enteral tubes using electromagnetic guidance in critically ill children. Pediatr Crit Care Med 10(2):196–200CrossRefGoogle Scholar
  86. 86.
    Hemington-Gorse SJ, Sheppard NN, Martin R et al (2011) The use of the Cortrak enteral access system for post-pyloric (PP) feeding tube placement in a burns intensive care unit. Burns 37(2):277–280PubMedCrossRefGoogle Scholar
  87. 87.
    Chenaitia H, Brun PM, Querellou E et al (2012) Ultrasound to confirm gastric tube placement in prehospital management. Resuscitation 83(4):447–451PubMedCrossRefGoogle Scholar
  88. 88.
    Swiech K, Lancaster DR, Sheehan R (1994) Use of a pressure gauge to differentiate gastric from pulmonary placement of nasoenteral feeding tubes. Appl Nurs Res 7(4):183–189PubMedCrossRefGoogle Scholar
  89. 89.
    Kenar J, Echard T, Riley S (2010) Use of an electromagnetic placement device for enteral feeding tubes reduces nursing time and financial burden. In: Critical care medicine. Northwestern Memorial Hospital, ChicagoGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2015

Authors and Affiliations

  • S. A. Milsom
    • 1
  • J. A. Sweeting
    • 4
    Email author
  • H. Sheahan
    • 3
  • E. Haemmerle
    • 5
  • J. A. Windsor
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Surgery, Faculty of Medical and Health Sciences, Auckland Clinical SchoolUniversity of AucklandAucklandNew Zealand
  3. 3.St John’s CollegeCambridgeUK
  4. 4.Department of Health ScienceAuckland University of TechnologyAucklandNew Zealand
  5. 5.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations