World Journal of Surgery

, Volume 37, Issue 12, pp 2747–2755 | Cite as

State of the Art in Robotic Hepatobiliary Surgery

  • Luca Milone
  • Despoina Daskalaki
  • Eduardo Fernandes
  • Isacco Damoli
  • Pier Cristoforo Giulianotti


Hepatobiliary (HB) surgery is a challenging surgical subspecialty that requires highly specialized training and an adequate level of experience in order to be performed safely. As a result, minimally invasive HB surgery has been met with slower acceptance as compared to other subspecialties, with many surgeons in the field still reluctant to adopt the approach. Recently development of the robotic platform has provided a tool that can overcome many of the limitations of conventional laparoscopic HB surgery. Augmented dexterity enabled by the endowristed movements, software filtration of the surgeon’s movements, and high-definition three-dimensional vision provided by the stereoscopic camera combine to allow steady and careful dissection of the liver hilum structures, as well as prompt and precise endosuturing in cases of intraoperative bleeding. These advantages have fostered many centers to widen the indications for minimally invasive HB and gastric surgery, with encouraging initial results. As one of the surgical groups that has performed the largest number of robot-assisted procedures worldwide, we provide a review of the state of the art in minimally invasive robot-assisted HB surgery.


Laparoscopic Cholecystectomy Liver Resection Common Bile Duct Stone Choledochal Cyst Major Hepatectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buell JF et al (2009) The international position on laparoscopic liver surgery: the Louisville Statement, 2008. Ann Surg 250:825–830PubMedCrossRefGoogle Scholar
  2. 2.
    Nguyen KT, Gamblin TC, Geller DA (2009) World review of laparoscopic liver resection—2,804 patients. Ann Surg 250:831–841PubMedCrossRefGoogle Scholar
  3. 3.
    Mostaedi R et al (2012) Laparoscopic liver resection: current role and limitations. World J Gastrointest Oncol 4:187–192PubMedCrossRefGoogle Scholar
  4. 4.
    Giulianotti PC et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138:777–784PubMedCrossRefGoogle Scholar
  5. 5.
    Giulianotti PC et al (2011) Robotic liver surgery: results for 70 resections. Surgery 149:29–39PubMedCrossRefGoogle Scholar
  6. 6.
    Choi GH et al (2012) Robotic liver resection: technique and results of 30 consecutive procedures. Surg Endosc 26:2247–2258PubMedCrossRefGoogle Scholar
  7. 7.
    Ji WB et al (2011) Robotic-assisted laparoscopic anatomic hepatectomy in China: initial experience. Ann Surg 253:342–348PubMedCrossRefGoogle Scholar
  8. 8.
    Lai EC, Yang GP, Tang CN (2013) Robot-assisted laparoscopic liver resection for hepatocellular carcinoma: short-term outcome. Am J Surg 204:697–702CrossRefGoogle Scholar
  9. 9.
    Packiam V et al (2012) Minimally invasive liver resection: robotic versus laparoscopic left lateral sectionectomy. J Gastrointest Surg 16:2233–2238PubMedCrossRefGoogle Scholar
  10. 10.
    Troisi RI et al (2013) Robot assistance in liver surgery: a real advantage over a fully laparoscopic approach? Results of a comparative bi-institutional analysis. Int J Med Robot 9:160–166PubMedCrossRefGoogle Scholar
  11. 11.
    Jacob BP, Gagner M (2003) Robotics and general surgery. Surg Clin North Am 83:1405–1419PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson EB (2009) The evolution of robotic general surgery. Scand J Surg 98:125–129PubMedGoogle Scholar
  13. 13.
    Ho CM et al (2013) Systematic review of robotic liver resection. Surg Endosc 27:732–739PubMedCrossRefGoogle Scholar
  14. 14.
    Abood GJ et al (2013) Robotic-assisted minimally invasive central pancreatectomy: technique and outcomes. J Gastrointest Surg 17:1002–1008PubMedCrossRefGoogle Scholar
  15. 15.
    Berber E et al (2010) Robotic versus laparoscopic resection of liver tumours. HPB (Oxford) 12:583–586CrossRefGoogle Scholar
  16. 16.
    Neugebauer E et al (1995) The E.A.E.S. Consensus Development Conferences on laparoscopic cholecystectomy, appendectomy, and hernia repair. Consensus statements–September 1994. The Educational Committee of the European Association for Endoscopic Surgery. Surg Endosc 9:550–563PubMedGoogle Scholar
  17. 17.
    Gurusamy KS et al (2012) Robot assistant versus human or another robot assistant in patients undergoing laparoscopic cholecystectomy. Cochrane Database Syst Rev 9:CD006578PubMedGoogle Scholar
  18. 18.
    Maeso S et al (2010) Efficacy of the da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Ann Surg 252:254–262PubMedCrossRefGoogle Scholar
  19. 19.
    Breitenstein S, Nocito A, Puhan M, Held U, Weber M, Clavien PA (2008) Robotic-assisted versus laparoscopic cholecystectomy: outcome and cost analyses of a case-matched control study. Ann Surg 247:987–993. doi: 10.1097/SLA.0b013e318172501f PubMedCrossRefGoogle Scholar
  20. 20.
    Vidovszky TJ et al (2006) Robotic cholecystectomy: learning curve, advantages, and limitations. J Surg Res 136:172–178PubMedCrossRefGoogle Scholar
  21. 21.
    Sun S et al (2009) Three-port versus four-port laparoscopic cholecystectomy: meta-analysis of randomized clinical trials. World J Surg 33:1904–1908. doi: 10.1007/s00268-009-0108-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Navarra G et al (1997) One-wound laparoscopic cholecystectomy. Br J Surg 84:695PubMedCrossRefGoogle Scholar
  23. 23.
    Trastulli S et al (2013) Systematic review and meta-analysis of randomized clinical trials comparing single-incision versus conventional laparoscopic cholecystectomy. Br J Surg 100:191–208PubMedCrossRefGoogle Scholar
  24. 24.
    Garg P et al (2012) Single-incision laparoscopic cholecystectomy vs. conventional laparoscopic cholecystectomy: a meta-analysis of randomized controlled trials. J Gastrointest Surg 16:1618–1628PubMedCrossRefGoogle Scholar
  25. 25.
    Kroh M et al (2011) First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci single-site platform. Surg Endosc 25:3566–3573PubMedCrossRefGoogle Scholar
  26. 26.
    Pietrabissa A et al (2012) Overcoming the challenges of single-incision cholecystectomy with robotic single-site technology. Arch Surg 147:709–714PubMedCrossRefGoogle Scholar
  27. 27.
    Buzad FA et al (2013) Single-site robotic cholecystectomy: efficiency and cost analysis. Int J Med Robot 9:365–370PubMedCrossRefGoogle Scholar
  28. 28.
    Way LW et al (2003) Causes and prevention of laparoscopic bile duct injuries: analysis of 252 cases from a human factors and cognitive psychology perspective. Ann Surg 237:460–469PubMedGoogle Scholar
  29. 29.
    Roslyn JJ et al (1993) Open cholecystectomy. A contemporary analysis of 42,474 patients. Ann Surg 218:129–137PubMedCrossRefGoogle Scholar
  30. 30.
    MacFadyen BV Jr et al (1998) Bile duct injury after laparoscopic cholecystectomy. The United States experience. Surg Endosc 12:315–321PubMedCrossRefGoogle Scholar
  31. 31.
    Flum DR et al (2003) Bile duct injury during cholecystectomy and survival in Medicare beneficiaries. JAMA 290:2168–2173PubMedCrossRefGoogle Scholar
  32. 32.
    Ishizawa T et al (2011) Application of fluorescent cholangiography to single-incision laparoscopic cholecystectomy. Surg Endosc 25:2631–2636PubMedCrossRefGoogle Scholar
  33. 33.
    Buchs NC et al (2012) Intra-operative fluorescent cholangiography using indocyanine green during robotic single site cholecystectomy. Int J Med Robot 8:436–440PubMedCrossRefGoogle Scholar
  34. 34.
    Spinoglio G et al (2013) Real-time near-infrared (NIR) fluorescent cholangiography in single-site robotic cholecystectomy (SSRC): a single-institutional prospective study. Surg Endosc 27:2156–2162PubMedCrossRefGoogle Scholar
  35. 35.
    Hungness ES, Soper NJ (2006) Management of common bile duct stones. J Gastrointest Surg 10:612–619PubMedCrossRefGoogle Scholar
  36. 36.
    Ponsky JL, Heniford BT, Gersin K (2000) Choledocholithiasis: evolving intraoperative strategies. Am Surg 66:262–268PubMedGoogle Scholar
  37. 37.
    Donnellan F et al (2012) Outcome of repeat ERCP after initial failed use of a needle knife for biliary access. Dig Dis Sci 57:1069–1071PubMedCrossRefGoogle Scholar
  38. 38.
    Parra-Membrives P et al (2010) Appropriate management of common bile duct stones: a RAND corporation/UCLA appropriateness method statistical analysis. Surg Endosc 24:1187–1194PubMedCrossRefGoogle Scholar
  39. 39.
    Ferguson CM (1998) Laparoscopic common bile duct exploration: practical application. Arch Surg 133:448–451PubMedCrossRefGoogle Scholar
  40. 40.
    Tinoco R et al (2008) Laparoscopic common bile duct exploration. Ann Surg 247:674–679PubMedCrossRefGoogle Scholar
  41. 41.
    Tranter SE, Thompson MH (2001) Potential of laparoscopic ultrasonography as an alternative to operative cholangiography in the detection of bile duct stones. Br J Surg 88:65–69PubMedCrossRefGoogle Scholar
  42. 42.
    Roeyen G, Chapelle T, Ysebaert D (2004) Robot-assisted choledochotomy: feasibility. Surg Endosc 18:165–166PubMedCrossRefGoogle Scholar
  43. 43.
    Jayaraman S, Davies W, Schlachta CM (2008) Robot-assisted minimally invasive common bile duct exploration: a Canadian first. Can J Surg 51:E93–E94PubMedGoogle Scholar
  44. 44.
    Alkhamesi NA et al (2013) Robot-assisted common bile duct exploration as an option for complex choledocholithiasis. Surg Endosc 27:263–266PubMedCrossRefGoogle Scholar
  45. 45.
    Ji WB et al (2011) One-stage robotic-assisted laparoscopic cholecystectomy and common bile duct exploration with primary closure in 5 patients. Surg Laparosc Endosc Percutan Tech 21:123–126PubMedCrossRefGoogle Scholar
  46. 46.
    Jang JY et al (2013) Laparoscopic excision of a choledochal cyst in 82 consecutive patients. Surg Endosc 27:1648–1652PubMedCrossRefGoogle Scholar
  47. 47.
    Farello GA et al (1995) Congenital choledochal cyst: video-guided laparoscopic treatment. Surg Laparosc Endosc 5:354–358PubMedGoogle Scholar
  48. 48.
    Chang EY et al (2012) Lessons and tips from the experience of pediatric robotic choledochal cyst resection. J Laparoendosc Adv Surg Tech A 22:609–614PubMedCrossRefGoogle Scholar
  49. 49.
    Meehan JJ, Elliott S, Sandler A (2007) The robotic approach to complex hepatobiliary anomalies in children: preliminary report. J Pediatr Surg 42:2104–2110Google Scholar
  50. 50.
    Dawrant MJ, Najmaldin AS, Alizai NK (2010) Robot-assisted resection of choledochal cysts and hepaticojejunostomy in children less than 10 kg. J Pediatr Surg 45:2364–2368PubMedCrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2013

Authors and Affiliations

  • Luca Milone
    • 1
  • Despoina Daskalaki
    • 1
  • Eduardo Fernandes
    • 1
  • Isacco Damoli
    • 1
  • Pier Cristoforo Giulianotti
    • 1
  1. 1.Division of Minimally Invasive and Robotic Surgery, Department of SurgeryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations