World Journal of Surgery

, Volume 36, Issue 10, pp 2288–2299

Regenerative Surgery: Tissue Engineering in General Surgical Practice

  • Victor W. Wong
  • Derrick C. Wan
  • Geoffrey C. Gurtner
  • Michael T. Longaker
Article

Abstract

Tissue engineering is a broad interdisciplinary field that aims to develop complex tissue and organ constructs through a combination of cell-, biomaterial-, and molecular-based approaches. This approach has the potential to transform the surgical treatment for diseases including trauma, cancer, and congenital malformations. A fundamental knowledge of key concepts in regenerative medicine is imperative for surgeons to maintain a leading role in developing and implementing these technologies. Researchers have started to elucidate the biologic mechanisms that maintain organ homeostasis throughout life, indicating that humans may have the latent capacity to regenerate complex tissues. By exploiting this intrinsic potential of the body, we can move even closer to developing functional, autologous replacement parts for a wide range of surgical diseases.

References

  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926PubMedCrossRefGoogle Scholar
  2. 2.
    Linden PK (2009) History of solid organ transplantation and organ donation. Crit Care Clin 25:165–184 ixPubMedCrossRefGoogle Scholar
  3. 3.
    Glotzbach JP, Wong VW, Gurtner GC et al (2011) Regenerative medicine. Curr Probl Surg 48:148–212PubMedCrossRefGoogle Scholar
  4. 4.
    Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121PubMedCrossRefGoogle Scholar
  5. 5.
    Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang F, Citra F, Wang DA (2011) Prospects of induced pluripotent stem cell technology in regenerative medicine. Tissue Eng Part B Rev 17:115–124PubMedCrossRefGoogle Scholar
  7. 7.
    Schultz GS, Davidson JM, Kirsner RS et al (2011) Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 19:134–148PubMedCrossRefGoogle Scholar
  8. 8.
    Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219PubMedCrossRefGoogle Scholar
  9. 9.
    Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593PubMedCrossRefGoogle Scholar
  10. 10.
    Babensee J, McIntire L, Mikos A (2000) Growth factor delivery for tissue engineering. Pharm Res 17:497–504PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang S, Uludağ H (2009) Nanoparticulate systems for growth factor delivery. Pharm Res 26:1561–1580PubMedCrossRefGoogle Scholar
  12. 12.
    Wong VW, Akaishi S, Longaker MT et al (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol 131:2186–2196PubMedCrossRefGoogle Scholar
  13. 13.
    Tepper OM, Callaghan MJ, Chang EI et al (2004) Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J 18:1231–1233PubMedGoogle Scholar
  14. 14.
    Atala A (2007) Engineering tissues, organs and cells. J Tissue Eng Regen Med 1:83–96PubMedCrossRefGoogle Scholar
  15. 15.
    Dabbas N, Adams K, Pearson K et al (2011) Frequency of abdominal wall hernias: is classical teaching out of date? JRSM Short Rep 2:5PubMedCrossRefGoogle Scholar
  16. 16.
    Flum DR, Horvath K, Koepsell T (2003) Have outcomes of incisional hernia repair improved with time? A population-based analysis. Ann Surg 237:129–135PubMedCrossRefGoogle Scholar
  17. 17.
    Shankaran V, Weber DJ, Reed RL II et al (2011) A review of available prosthetics for ventral hernia repair. Ann Surg 253:16–26PubMedCrossRefGoogle Scholar
  18. 18.
    Bellows CF, Alder A, Helton WS (2006) Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices 3:657–675PubMedCrossRefGoogle Scholar
  19. 19.
    Gobin AS, Butler CE, Mathur AB (2006) Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Eng 12:3383–3394PubMedCrossRefGoogle Scholar
  20. 20.
    Stanwix MG, Nam AJ, Hui-Chou HG et al (2011) Abdominal ventral hernia repair with current biological prostheses: an experimental large animal model. Ann Plast Surg 66:403–409PubMedCrossRefGoogle Scholar
  21. 21.
    Baillie DR, Stawicki SP, Eustance N et al (2007) Use of human and porcine dermal-derived bioprostheses in complex abdominal wall reconstructions: a literature review and case report. Ostomy Wound Manage 53:30–37PubMedGoogle Scholar
  22. 22.
    Fann SA, Terracio L, Yan W et al (2006) A model of tissue-engineered ventral hernia repair. J Invest Surg 19:193–205PubMedCrossRefGoogle Scholar
  23. 23.
    Logan MS, Propst JT, Nottingham JM et al (2010) Human satellite progenitor cells for use in myofascial repair: isolation and characterization. Ann Plast Surg 64:794–799PubMedCrossRefGoogle Scholar
  24. 24.
    Altman AM, Abdul Khalek FJ, Alt EU et al (2010) Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias. Plast Reconstr Surg 126:845–854PubMedCrossRefGoogle Scholar
  25. 25.
    Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2:93–98PubMedCrossRefGoogle Scholar
  26. 26.
    Marston WA (2004) Dermagraft, a bioengineered human dermal equivalent for the treatment of chronic nonhealing diabetic foot ulcer. Expert Rev Med Devices 1:21–31PubMedCrossRefGoogle Scholar
  27. 27.
    Still J, Glat P, Silverstein P et al (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29:837–841PubMedCrossRefGoogle Scholar
  28. 28.
    Boyce ST, Kagan RJ, Meyer NA et al (1999) Cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil 20:453–461PubMedCrossRefGoogle Scholar
  29. 29.
    Yang J, Woo SL, Yang G et al (2010) Construction and clinical application of a human tissue-engineered epidermal membrane. Plast Reconstr Surg 125:901–909PubMedCrossRefGoogle Scholar
  30. 30.
    Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180:273–284PubMedCrossRefGoogle Scholar
  31. 31.
    Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 24:7–19PubMedCrossRefGoogle Scholar
  32. 32.
    Saxena AK, Kofler K, Ainodhofer H et al (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13:1037–1043PubMedCrossRefGoogle Scholar
  33. 33.
    Hayashi K, Ando N, Ozawa S et al (2004) A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. ASAIO J 50:261–266PubMedCrossRefGoogle Scholar
  34. 34.
    Nakase Y, Nakamura T, Kin S et al (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136:850–859PubMedCrossRefGoogle Scholar
  35. 35.
    Hori Y, Nakamura T, Matsumoto K et al (2001) Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J 47:206–210PubMedCrossRefGoogle Scholar
  36. 36.
    Araki M, Tao H, Sato T et al (2009) Development of a new tissue-engineered sheet for reconstruction of the stomach. Artif Organs 33:818–826PubMedCrossRefGoogle Scholar
  37. 37.
    Maemura T, Ogawa K, Shin M et al (2004) Assessment of tissue-engineered stomach derived from isolated epithelium organoid units. Transplant Proc 36:1595–1599PubMedCrossRefGoogle Scholar
  38. 38.
    Maemura T, Shin M, Kinoshita M et al (2008) A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artif Organs 32:234–239PubMedCrossRefGoogle Scholar
  39. 39.
    Speer AL, Sala FG, Matthews JA et al (2011) Murine tissue-engineered stomach demonstrates epithelial differentiation. J Surg Res 171:6–14PubMedCrossRefGoogle Scholar
  40. 40.
    Simons BD, Clevers H (2011) Stem cell self-renewal in intestinal crypt. Exp Cell Res 317:2719–2724PubMedCrossRefGoogle Scholar
  41. 41.
    Chen MK, Beierle EA (2004) Animal models for intestinal tissue engineering. Biomaterials 25:1675–1681PubMedCrossRefGoogle Scholar
  42. 42.
    Gupta A, Dixit A, Sales KM et al (2006) Tissue engineering of small intestine: current status. Biomacromolecules 7:2701–2709PubMedCrossRefGoogle Scholar
  43. 43.
    Javaid-ur-Rehman, Waseem T (2008) Intestinal tissue engineering: where do we stand? Surg Today 38:484–486PubMedCrossRefGoogle Scholar
  44. 44.
    Sala FG, Matthews JA, Speer AL et al (2011) A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse. Tissue Eng Part A 17:1841–1850PubMedCrossRefGoogle Scholar
  45. 45.
    Raghavan S, Lam MT, Foster LL et al (2010) Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng Part C Methods 16:999–1009PubMedCrossRefGoogle Scholar
  46. 46.
    Grikscheit TC, Ochoa ER, Ramsanahie A et al (2003) Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann Surg 238:35–41PubMedGoogle Scholar
  47. 47.
    Grikscheit TC, Ogilvie JB, Ochoa ER et al (2002) Tissue-engineered colon exhibits function in vivo. Surgery 132:200–204PubMedCrossRefGoogle Scholar
  48. 48.
    Somara S, Gilmont RR, Dennis RG et al (2009) Bioengineered internal anal sphincter derived from isolated human internal anal sphincter smooth muscle cells. Gastroenterology 137:53–61PubMedCrossRefGoogle Scholar
  49. 49.
    Raghavan S, Miyasaka EA, Hashish M et al (2010) Successful implantation of physiologically functional bioengineered mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 299:G430–G439PubMedCrossRefGoogle Scholar
  50. 50.
    Hashish M, Raghavan S, Somara S et al (2010) Surgical implantation of a bioengineered internal anal sphincter. J Pediatr Surg 45:52–58PubMedCrossRefGoogle Scholar
  51. 51.
    Turner R, Lozoya O, Wang Y et al (2011) Human hepatic stem cell and maturational liver lineage biology. Hepatology 53:1035–1045PubMedCrossRefGoogle Scholar
  52. 52.
    Fiegel HC, Kneser U, Kluth D et al (2009) Development of hepatic tissue engineering. Pediatr Surg Int 25:667–673PubMedCrossRefGoogle Scholar
  53. 53.
    Ohashi K, Kay MA, Yokoyama T et al (2005) Stability and repeat regeneration potential of the engineered liver tissues under the kidney capsule in mice. Cell Transplant 14:621–627PubMedCrossRefGoogle Scholar
  54. 54.
    Ohashi K, Waugh JM, Dake MD et al (2005) Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases. Hepatology 41:132–140PubMedCrossRefGoogle Scholar
  55. 55.
    Ohashi K, Yokoyama T, Yamato M et al (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885PubMedCrossRefGoogle Scholar
  56. 56.
    Bruns H, Kneser U, Holzhuter S et al (2005) Injectable liver: a novel approach using fibrin gel as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng 11:1718–1726PubMedCrossRefGoogle Scholar
  57. 57.
    Li J, Tao R, Wu W et al (2010) 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes. Stem Cells Dev 19:1427–1436PubMedCrossRefGoogle Scholar
  58. 58.
    Kazemnejad S, Allameh A, Soleimani M et al (2009) Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 24:278–287PubMedCrossRefGoogle Scholar
  59. 59.
    Fiegel HC, Pryymachuk G, Rath S et al (2010) Foetal hepatocyte transplantation in a vascularized AV-loop transplantation model in the rat. J Cell Mol Med 14:267–274PubMedCrossRefGoogle Scholar
  60. 60.
    Sugimoto S, Harada K, Shiotani T et al (2005) Hepatic organoid formation in collagen sponge of cells isolated from human liver tissues. Tissue Eng 11:626–633PubMedCrossRefGoogle Scholar
  61. 61.
    Watanabe FD, Mullon CJ, Hewitt WR et al (1997) Clinical experience with a bioartificial liver in the treatment of severe liver failure: a phase I clinical trial. Ann Surg 225:484–491 discussion 491–484PubMedCrossRefGoogle Scholar
  62. 62.
    Pless G (2010) Bioartificial liver support systems. Methods Mol Biol 640:511–523PubMedCrossRefGoogle Scholar
  63. 63.
    Yu CB, Pan XP, Li LJ (2009) Progress in bioreactors of bioartificial livers. Hepatobiliary Pancreat Dis Int 8:134–140PubMedGoogle Scholar
  64. 64.
    Bergenstal RM, Tamborlane WV, Ahmann A et al (2010) Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 363:311–320PubMedCrossRefGoogle Scholar
  65. 65.
    El-Khatib FH, Russell SJ, Nathan DM et al (2010) A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl Med 2:27ra27PubMedCrossRefGoogle Scholar
  66. 66.
    Omer A, Duvivier-Kali V, Fernandes J et al (2005) Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 79:52–58PubMedCrossRefGoogle Scholar
  67. 67.
    Hamid M, McCluskey JT, McClenaghan NH et al (2001) Functional examination of microencapsulated bioengineered insulin-secreting beta-cells. Cell Biol Int 25:553–556PubMedCrossRefGoogle Scholar
  68. 68.
    Schaffellner S, Stadlbauer V, Stiegler P et al (2005) Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant Proc 37:248–252PubMedCrossRefGoogle Scholar
  69. 69.
    Saito T, Ohashi K, Utoh R et al (2011) Reversal of diabetes by the creation of neo-islet tissues into a subcutaneous site using islet cell sheets. Transplantation 92:1231–1236PubMedCrossRefGoogle Scholar
  70. 70.
    Kodama S, Kojima K, Furuta S et al (2009) Engineering functional islets from cultured cells. Tissue Eng Part A 15:3321–3329PubMedCrossRefGoogle Scholar
  71. 71.
    Tsang WG, Zheng T, Wang Y et al (2007) Generation of functional islet-like clusters after monolayer culture and intracapsular aggregation of adult human pancreatic islet tissue. Transplantation 83:685–693PubMedCrossRefGoogle Scholar
  72. 72.
    Sumi S, Gu Y, Hiura A et al (2004) Stem cells and regenerative medicine for diabetes mellitus. Pancreas 29:e85–e89PubMedCrossRefGoogle Scholar
  73. 73.
    Raikwar SP, Zavazava N (2011) Spontaneous in vivo differentiation of embryonic stem cell-derived pancreatic endoderm-like cells corrects hyperglycemia in diabetic mice. Transplantation 91:11–20PubMedCrossRefGoogle Scholar
  74. 74.
    Kim JH, Kim J, Kong WH et al (2010) Factors affecting tissue culture and transplantation using omentum. ASAIO J 56:349–355PubMedGoogle Scholar
  75. 75.
    Chang EI, Bonillas RG, El-ftesi S et al (2009) Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J 23:906–915PubMedCrossRefGoogle Scholar
  76. 76.
    Suh S, Kim J, Shin J et al (2004) Use of omentum as an in vivo cell culture system in tissue engineering. ASAIO J 50:464–467PubMedCrossRefGoogle Scholar
  77. 77.
    Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885PubMedCrossRefGoogle Scholar
  78. 78.
    Zhao R, Xi R (2010) Stem cell competition for niche occupancy: emerging themes and mechanisms. Stem Cell Rev 6:345–350PubMedCrossRefGoogle Scholar
  79. 79.
    Michaels J, Dobryansky M, Galiano RD et al (2004) Ex vivo transduction of microvascular free flaps for localized peptide delivery. Ann Plast Surg 52:581–584PubMedCrossRefGoogle Scholar
  80. 80.
    Michaels JV, Levine JP, Hazen A et al (2006) Biologic brachytherapy: ex vivo transduction of microvascular beds for efficient, targeted gene therapy. Plast Reconstr Surg 118:54–65 discussion 66PubMedCrossRefGoogle Scholar
  81. 81.
    Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53PubMedCrossRefGoogle Scholar
  82. 82.
    Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221PubMedCrossRefGoogle Scholar
  83. 83.
    Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933PubMedCrossRefGoogle Scholar
  84. 84.
    Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820PubMedCrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2012

Authors and Affiliations

  • Victor W. Wong
    • 1
    • 2
  • Derrick C. Wan
    • 2
  • Geoffrey C. Gurtner
    • 2
  • Michael T. Longaker
    • 2
  1. 1.Department of SurgeryOregon Health & Science UniversityPortlandUSA
  2. 2.Department of SurgerySchool of Medicine, Stanford UniversityStanfordUSA

Personalised recommendations