World Journal of Surgery

, Volume 35, Issue 6, pp 1387–1395

Supplemental Postoperative Oxygen in the Prevention of Surgical Wound Infection after Lower Limb Vascular Surgery: A Randomized Controlled Trial

  • Johanna Turtiainen
  • Eija I. T. Saimanen
  • Teemu J. Partio
  • Kimmo T. Mäkinen
  • Matti T. Reinikainen
  • Jyrki J. Virkkunen
  • Kari S. Vuorio
  • Tapio Hakala



Surgical wound infection (SWI) is a common complication after peripheral vascular surgery. Infections increase morbidity and costs of treatment. The aim of the present study was to test the hypothesis that supplemental postoperative oxygen decreases the incidence of SWI after lower limb revascularization.


This prospective, randomized, multicenter, single-blinded trial was conducted between May 2009 and February 2010 in six secondary referral hospitals in Finland. We randomly allocated 274 patients undergoing surgery for lower limb revascularization to the study group (n = 137) or a control group (n = 137). The study group received supplemental inspired oxygen for the first 2 days after surgery. The main outcome was SWI. Patients were followed up for 30 days or until the SWI was healed. Logistic regression analysis was used to assess the independent effect of supplemental oxygen on the incidence of SWI.


Altogether 63 (23%) patients developed SWI; 47 (75%) of the infections were superficial. There were two vascular graft infections. SWI occurred in 25 patients (18.2%) in the study group and in 38 patients (27.7%) in the control group [odds ratio (OR) 0.56, 95% confidence interval (CI) 0.30–1.04; P = 0.07]. In isolated groin incisions, 3 patients of 52 (5.8%) in the study group and 12 patients of 51 (23.5%) in the control group developed SWI; OR = 0.20, 95% CI 0.04–0.95; P = 0.04.


There was an indication that supplemental inspired oxygen tended to decrease the incidence of SWI after lower limb vascular surgery. In isolated groin incisions, the decrease of SWI incidence in the supplemental oxygen group was significant.


  1. 1.
    Lyytikäinen O, Kanerva M, Agthe N et al (2008) Healthcare-associated infections in Finnish acute care hospitals: a national prevalence survey. J Hosp Infect 69:288–294PubMedCrossRefGoogle Scholar
  2. 2.
    Kent KG, Bartek S, Kuntz KM et al (1996) Prospective study of wound complications in continuous infrainguinal incisions after lower limb arterial reconstruction: incidence, risk factors, and cost. Surgery 119:378–383PubMedCrossRefGoogle Scholar
  3. 3.
    Richet HM, Chidiac C, Prat A et al (1991) Analysis of risk factors for surgical wound infections following vascular surgery. Am J Med 91:170–172CrossRefGoogle Scholar
  4. 4.
    Childress BB, Berceli SA, Nelson PR et al (2007) Impact of an absorbent silver eluting dressing system on lower extremity revascularization wound complications. Ann Vasc Surg 21:598–602PubMedCrossRefGoogle Scholar
  5. 5.
    Turtiainen J, Saimanen E, Partio T et al (2010) Surgical wound infections after vascular surgery: prospective multicenter observational study. Scand J Surg 99:167–172PubMedGoogle Scholar
  6. 6.
    Nguyen LL, Brahmanandam S, Bandyk DF et al (2007) Female gender and oral anticoagulants are associated with wound complications in lower extremity vein bypass: an analysis of 1404 operations for critical limb ischemia. J Vasc Surg 46:1191–1197PubMedCrossRefGoogle Scholar
  7. 7.
    Pounds LL, Montes-Walters M, Mayhall CG et al (2005) A changing pattern of infection after major vascular reconstructions. Vasc Endovasc Surg 39:511–517CrossRefGoogle Scholar
  8. 8.
    Jonson K, Jensen JA, Goodson WH, Scheuensthul H et al (1991) Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg 214:605–613CrossRefGoogle Scholar
  9. 9.
    Sheikh AY, Gibson JJ, Rollins M et al (2000) Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg 135:1293–1297PubMedCrossRefGoogle Scholar
  10. 10.
    Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:659–668PubMedCrossRefGoogle Scholar
  11. 11.
    Jönsson K, Hunt TK, Mathes SJ (1988) Oxygen as an isolated variable influences resistance to infection. Ann Surg 208:783–787PubMedCrossRefGoogle Scholar
  12. 12.
    Allen DB, Maguire JJ, Mahdavian M, Wicke C et al (1997) Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 132:991–996PubMedGoogle Scholar
  13. 13.
    Qadan M, Battisa C, Gardner SA et al (2010) Oxygen and surgical site infection. Anesthesiology 113:369–377PubMedCrossRefGoogle Scholar
  14. 14.
    Grief R, Akca O, Horn EP et al (2000) Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med 342:161–167CrossRefGoogle Scholar
  15. 15.
    Belda FJ, Agulera L, Asuncion JG et al (2005) Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 294(16):2035–2042PubMedCrossRefGoogle Scholar
  16. 16.
    Pryor KO, Fahley TJ, Lien CA (2004) Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomised controlled trial. JAMA 291:79–87PubMedCrossRefGoogle Scholar
  17. 17.
    Gardella C, Goltra LB, Laschansky E et al (2008) High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol 112(3):545–552PubMedCrossRefGoogle Scholar
  18. 18.
    Horan TC, Gaynes RP, Martone JW et al (1992) CDC definitions of nosocomial surgical site infections, a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 13:606–608PubMedCrossRefGoogle Scholar
  19. 19.
    Nichols D, Nielsen ND (2010) Oxygen delivery and consumption: a microcirculatory perspective. Crit Care Clin 26:239–253PubMedCrossRefGoogle Scholar
  20. 20.
    Harder L, Boshkow L (2010) The optimal hematocrit. Crit Care Clin 26:335–354PubMedCrossRefGoogle Scholar
  21. 21.
    Loiacono LA, Shapiro DS (2010) Detection of hypoxia at the cellular level. Crit Care Clin 26:409–421PubMedCrossRefGoogle Scholar
  22. 22.
    Deneke SM, Fanburg BL (1980) Normobaric oxygen toxicity of the lung. N Engl J Med 303:76–86PubMedCrossRefGoogle Scholar
  23. 23.
    Aoki T, Yamasawa F, Kawashiro T et al (2008) Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung. Respir Res 9:37PubMedCrossRefGoogle Scholar
  24. 24.
    Benditt JO (2000) Adverse effects of low-flow oxygen therapy. Respir Care 45:54–61PubMedGoogle Scholar
  25. 25.
    Robinson TD, Freiberg DB, Regnis JA et al (2000) The role of hypoventilation and ventilation-perfusion redistribution in oxygen-induced hypercapnia during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:1524–1529PubMedGoogle Scholar
  26. 26.
    Myles PS, Leslie K, Chan MTV et al (2007) Avoidance of nitrous oxide for patients undergoing major surgery. Anesthesiology 107:221–231PubMedCrossRefGoogle Scholar
  27. 27.
    Meyhoff CS, Wetterslev J, Jorgensen LN (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomised clinical trial. JAMA 302:1543–1550PubMedCrossRefGoogle Scholar
  28. 28.
    Mayzler O, Weksler N, Domchik S et al (2005) Does supplemental oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol 71:21–25PubMedGoogle Scholar
  29. 29.
    Qadan M, Akca O, Mahid SS et al (2009) Perioperative supplemental oxygen therapy and surgical site infection. Arch Surg 144:359–366PubMedCrossRefGoogle Scholar
  30. 30.
    Himbeeck FJ, Knippenberg LA, Niessen MC et al (1992) Wound infection after arterial surgical procedures. Eur J Vasc Surg 6:494–499PubMedCrossRefGoogle Scholar
  31. 31.
    Josephs LG, Cordts PR, Di Edwardo CL et al (1993) Do infected inguinal lymph nodes increase the incidence if postoperative groin wound infection? J Vasc Surg 17:1077–1080PubMedCrossRefGoogle Scholar
  32. 32.
    Blankensteijn JD, Gertler JP, Petersen MJ et al (1996) Avoiding infrainguinal bypass wound complications in patients with chronic renal insufficiency: the role of anatomic plane. Eur Vasc Endovasc Surg 1:98–104CrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2011

Authors and Affiliations

  • Johanna Turtiainen
    • 1
  • Eija I. T. Saimanen
    • 2
  • Teemu J. Partio
    • 3
  • Kimmo T. Mäkinen
    • 4
  • Matti T. Reinikainen
    • 5
  • Jyrki J. Virkkunen
    • 6
  • Kari S. Vuorio
    • 7
  • Tapio Hakala
    • 1
  1. 1.Department of SurgeryNorth Karelia Central HospitalJoensuuFinland
  2. 2.Department of SurgerySouth Karelia Central HospitalLappeenrantaFinland
  3. 3.Department of SurgeryMikkeli Central HospitalMikkeliFinland
  4. 4.Department of Vascular SurgeryKuopio University HospitalKuopioFinland
  5. 5.Department of Anesthesiology and Intensive CareNorth Karelia Central HospitalJoensuuFinland
  6. 6.Department of SurgeryCentral Hospital of Central FinlandJyväskyläFinland
  7. 7.Department of SurgeryLapland Central HospitalRovaniemiFinland

Personalised recommendations