World Journal of Surgery

, Volume 34, Issue 6, pp 1368–1372

[177Lu-DOTA0-Tyr3]-Octreotate Treatment in Patients with Disseminated Gastroenteropancreatic Neuroendocrine Tumors: The Value of Measuring Absorbed Dose to the Kidney

  • Christina Swärd
  • Peter Bernhardt
  • Håkan Ahlman
  • Bo Wängberg
  • Eva Forssell-Aronsson
  • Maria Larsson
  • Johanna Svensson
  • Rauni Rossi-Norrlund
  • Lars Kölby



Peptide receptor radiation therapy (PRRT) using [177Lu-DOTA0-Tyr3]-octreotate is a new, promising option for treatment of disseminated gastroenteropancreatic neuroendocrine tumors (GEPNETs).


During 2006-2008, 26 patients with disseminated GEPNETs were treated with 177Lu-octreotate. Radiologic response (RECIST), biochemical response [plasma chromogranin-A (P-CgA)], hematologic toxicity [Common Toxicity Criteria (CTC)], absorbed dose to the kidneys (conjugate view method), and glomerular filtration rate (GFR) were analyzed.


177Lu-octreotate (8 GBq) was given one to five times (median = 3) with a 6-week interval between each. Sixteen of the 26 patients were evaluated radiologically; 6 (38%) had partial response (PR), 8 (50%) had stable disease (SD), and 2 (13%) had progressive disease (PD). Seventeen of the 26 patients were evaluated biochemically; 6 (35%) showed a ≥30% decrease, 8 (47%) showed a ≥20% increase, and 3 (18%) showed neither a ≥30% decrease nor a ≥20% increase. The mean absorbed dose to the kidneys was 24 Gy. With a dose limit of 27 Gy to the kidneys, 10 patients did not receive the planned four treatments, while four patients had the potential to receive additional treatment. A significant reduction (p = 0.0013) of GFR was observed at follow-up. Three patients experienced CTC grade 3 hematologic toxicity.


By using the absorbed dose to the kidneys as a limiting factor, treatment with 177Lu-octreotate can be individualized, e.g., overtreatment can be avoided and patients with the potential to receive additional treatment can be identified. Further studies are needed to define tolerance doses to the kidneys so that treatment can be optimized.


  1. 1.
    Wängberg B, Westberg G, Tylén U et al (1996) Survival of patients with disseminated midgut carcinoid tumors after aggressive tumor reduction. World J Surg 20:892–899, discussion 899CrossRefPubMedGoogle Scholar
  2. 2.
    Swärd C, Johanson V, Nieveen van Dijkum E et al (2009) Prolonged survival after hepatic artery embolization in patients with midgut carcinoid syndrome. Br J Surg 96:517–521CrossRefPubMedGoogle Scholar
  3. 3.
    Öberg K (2000) Interferon in the management of neuroendocrine GEP-tumors: a review. Digestion 62(Suppl 1):92–97PubMedGoogle Scholar
  4. 4.
    Kölby L, Persson G, Franzén S et al (2003) Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90:687–693CrossRefPubMedGoogle Scholar
  5. 5.
    Öberg K (2003) Diagnosis and treatment of carcinoid tumors. Expert Rev Anticancer Ther 3:863–877CrossRefPubMedGoogle Scholar
  6. 6.
    Öberg K (1993) The use of chemotherapy in the management of neuroendocrine tumors. Endocrinol Metab Clin North Am 22:941–952PubMedGoogle Scholar
  7. 7.
    Rougier P, Mitry E (2000) Chemotherapy in the treatment of neuroendocrine malignant tumors. Digestion 62(Suppl 1):73–78CrossRefPubMedGoogle Scholar
  8. 8.
    Kwekkeboom DJ, Teunissen JJ, Bakker WH et al (2005) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 23:2754–2762CrossRefPubMedGoogle Scholar
  9. 9.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors, European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  10. 10.
    Hsiao RJ, Neumann HP, Parmer RJ et al (1990) Chromogranin A in familial pheochromocytoma: diagnostic screening value, prediction of tumor mass, and post-resection kinetics indicating two-compartment distribution. Am J Med 88:607–613CrossRefPubMedGoogle Scholar
  11. 11.
    Kölby L, Bernhardt P, Swärd C et al (2004) Chromogranin A as a determinant of midgut carcinoid tumour volume. Regul Pept 120:269–273CrossRefPubMedGoogle Scholar
  12. 12.
    Stridsberg M, Öberg K, Li Q et al (1995) Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144:49–59CrossRefPubMedGoogle Scholar
  13. 13.
    Bernhardt P, Benjegard SA, Kölby L et al (2001) Dosimetric comparison of radionuclides for therapy of somatostatin receptor-expressing tumors. Int J Radiat Oncol Biol Phys 51:514–524PubMedGoogle Scholar
  14. 14.
    de Jong M, Breeman WA, Valkema R et al (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46(Suppl 1):13S–17SPubMedGoogle Scholar
  15. 15.
    Andersson P, Forssell-Aronsson E, Johanson V et al (1996) Internalization of indium-111 into human neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe1-octreotide. J Nucl Med 37:2002–2006PubMedGoogle Scholar
  16. 16.
    Krenning EP, de Jong M, Kooij PP et al (1999) Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol 10(Suppl 2):S23–S29CrossRefPubMedGoogle Scholar
  17. 17.
    van Essen M, Krenning EP, Bakker WH et al (2007) Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. Eur J Nucl Med Mol Imaging 34:1219–1227CrossRefPubMedGoogle Scholar
  18. 18.
    Paganelli G, Zoboli S, Cremonesi M et al (2001) Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur J Nucl Med 28:426–434CrossRefPubMedGoogle Scholar
  19. 19.
    Waldherr C, Pless M, Maecke HR et al (2001) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12:941–945CrossRefPubMedGoogle Scholar
  20. 20.
    Valkema R, De Jong M, Bakker WH et al (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32:110–122CrossRefPubMedGoogle Scholar
  21. 21.
    Hsiao RJ, Mezger MS, O’Connor DT (1990) Chromogranin A in uremia: progressive retention of immunoreactive fragments. Kidney Int 37:955–964CrossRefPubMedGoogle Scholar
  22. 22.
    Forssell-Aronsson E, Bernhardt P, Nilsson O et al (2004) Biodistribution data from 100 patients i.v. injected with 111In-DTPA-D-Phe1-octreotide. Acta Oncol 43:436–442CrossRefPubMedGoogle Scholar
  23. 23.
    Forssell-Aronsson E, Fjälling M, Nilsson O et al (1995) Indium-111 activity concentration in tissue samples after intravenous injection of indium-111-DTPA-D-Phe-1-octreotide. J Nucl Med 36:7–12PubMedGoogle Scholar
  24. 24.
    Kölby L, Wängberg B, Ahlman H et al (1998) Somatostatin receptor subtypes, octreotide scintigraphy, and clinical response to octreotide treatment in patients with neuroendocrine tumors. World J Surg 22:679–683CrossRefPubMedGoogle Scholar
  25. 25.
    Kubota A, Yamada Y, Kagimoto S et al (1994) Identification of somatostatin receptor subtypes and an implication for the efficacy of somatostatin analogue SMS 201-995 in treatment of human endocrine tumors. J Clin Invest 93:1321–1325CrossRefPubMedGoogle Scholar
  26. 26.
    de Visser M, Verwijnen SM, de Jong M (2008) Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy. Cancer Biother Radiopharm 23:137–157CrossRefPubMedGoogle Scholar
  27. 27.
    Kölby L, Bernhardt P, Ahlman H et al (2001) A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol 158:745–755PubMedGoogle Scholar
  28. 28.
    Kölby L, Bernhardt P, Johanson V et al (2005) Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer 93:1144–1151CrossRefPubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2010

Authors and Affiliations

  • Christina Swärd
    • 1
  • Peter Bernhardt
    • 2
  • Håkan Ahlman
    • 1
  • Bo Wängberg
    • 1
  • Eva Forssell-Aronsson
    • 2
  • Maria Larsson
    • 2
  • Johanna Svensson
    • 3
  • Rauni Rossi-Norrlund
    • 4
  • Lars Kölby
    • 1
  1. 1.Department of SurgeryUniversity of Gothenburg, Sahlgrenska University HospitalGöteborgSweden
  2. 2.Department of Radiation PhysicsUniversity of Gothenburg, Sahlgrenska University HospitalGöteborgSweden
  3. 3.Department of OncologyUniversity of Gothenburg, Sahlgrenska University HospitalGöteborgSweden
  4. 4.Department of RadiologyUniversity of Gothenburg, Sahlgrenska University HospitalGöteborgSweden

Personalised recommendations