World Journal of Surgery

, Volume 33, Issue 11, pp 2224–2233 | Cite as

Molecular Genetics of Parathyroid Disease

  • Gunnar Westin
  • Peyman Björklund
  • Göran Åkerström



Primary hyperparathyroidism (HPT) is often caused by a benign parathyroid tumor, adenoma; less commonly by multiglandular parathyroid disease/hyperplasia; and rarely by parathyroid carcinoma. Patients with multiple tumors require wider exploration to avoid recurrence and have increased risk for hereditary disease. Secondary HPT is a common complication of renal failure. Improved knowledge of the molecular background of parathyroid tumor development may help select patients for appropriate surgical treatment and can eventually provide new means of treatment. The present contribution summarizes more recent knowledge of parathyroid molecular genetics.


A literature search and review was made to evaluate the level of evidence concerning molecular biology and genetics of primary, secondary, and familial HPT according to criteria proposed by Sackett, with recommendation grading by Heinrich et al.


Most parathyroid adenomas and hyperplastic glands are monoclonal lesions. Cyclin D1 gene (CCND1) translocation and oncogene action occur in 8% of adenomas; cyclin D1 overexpression is seen in 20% to 40% of parathyroid adenomas and in 31% of secondary hyperplastic glands. Somatic loss of one MEN1 allele is seen in 25% to 40% of sporadic parathyroid adenomas, half of which have inactivating mutation of the remaining allele. Inactivating somatic HRPT2 mutations are common in parathyroid carcinoma, often causing decreased expression of the protein parafibromin involved in cyclin D1 regulation. Aberrant regulation of Wnt/β-catenin signaling may be important for parathyroid tumor development.


Molecular genetic studies of parathyroid tumors are well designed basic experimental studies providing strong level III evidence, with data frequently confirmed by subsequent studies.


  1. 1.
    Lundgren E, Rastad J, Thurfjell E et al (1997) Population-based screening for primary hyperparathyroidism with serum calcium and parathyroid hormone values in menopausal women. Surgery 294:287–294CrossRefGoogle Scholar
  2. 2.
    Åkerström G, Rudberg C, Grimelius L et al (1986) Histologic parathyroid abnormalities in an autopsy series. Hum Pathol 7:520–527CrossRefGoogle Scholar
  3. 3.
    Tisell LE, Carlsson S, Fjalling M et al (1985) Hyperparathyroidism subsequent to neck irradiation: risk factors. Cancer 56:1529–1533PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshimoto K, Yamasaki R, Sakai H et al (1989) Ectopic production of parathyroid hormone by small cell lung cancer in a patient with hypercalcemia. J Clin Endocrinol Metab 68:976–981PubMedCrossRefGoogle Scholar
  5. 5.
    Nussbaum SR, Gaz RD, Arnold A (1990) Hypercalcemia and ectopic secretion of parathyroid hormone by an ovarian carcinoma with rearrangement of the gene for parathyroid hormone. N Engl J Med 323:1324–1328PubMedGoogle Scholar
  6. 6.
    Strewler GJ, Budayr AA, Clark OH, Nissenson A (1993) Production of parathyroid hormone by a malignant nonparathyroid tumour in a hypercalcemic patient. J Clin Endocrinol Metab 76:1373–1375PubMedCrossRefGoogle Scholar
  7. 7.
    St Goar WT (1963) Case records of the Massachusetts General Hospital. N Engl J Med 268:943–953Google Scholar
  8. 8.
    Smith JF (1970) Parathyroid adenomas associated with the malabsorption syndrome and chronic renal disease. J Clin Pathol 23:362–369PubMedCrossRefGoogle Scholar
  9. 9.
    Rastad J, Åkerström G (1994) Secondary hyperparathyroidism. In: Åkerström G, Juhlin C, Rastad J (eds) Current controversy in parathyroid operation and reoperation. Landes, AustinGoogle Scholar
  10. 10.
    McIntosh WB, Horn EH, Mathieson LM et al (1987) The prevalence, mechanism and clinical significance of lithium-induced hypercalcaemia. Med Lab Sci 44:115–118PubMedGoogle Scholar
  11. 11.
    Toffaletti J, McComb RB, Bowers GN (1979) Increase in dialyzable calcium associated with therapy with lithium. Clin Chem 25:1806–1809PubMedGoogle Scholar
  12. 12.
    Sackett DL (1989) Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 95(Suppl 2):2s–4sPubMedGoogle Scholar
  13. 13.
    Heinrich S, Schafer M, Rousson V, Clavien PA (2006) Evidence-based treatment of acute pancreatitis: a look at established paradigms. Ann Surg 243:154–168PubMedCrossRefGoogle Scholar
  14. 14.
    Fialkow PJ, Jackson CE, Block MA, Greenwald KA (1977) Multicellular origin of parathyroid “adenomas”. N Engl J Med 277:696–698Google Scholar
  15. 15.
    Arnold A, Staunton CE, Kim HG et al (1988) Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med 318:658–662PubMedGoogle Scholar
  16. 16.
    Friedman E, Sakaguchi K, Bale AE et al (1989) Clonality of parathyroid tumours in familial multiple endocrine neoplasia type 1. N Engl J Med 32:213–218CrossRefGoogle Scholar
  17. 17.
    Arnold A, Brown MF, Ureña P et al (1995) Monoclonality of parathyroid tumours in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest 95:2047–2053PubMedCrossRefGoogle Scholar
  18. 18.
    Tominaga Y, Kohara S, Namii Y et al (1996) Clonal analysis of nodular parathyroid hyperplasia in renal hyperparathyroidism. World J Surg 20:744–750PubMedCrossRefGoogle Scholar
  19. 19.
    Arnold A (1993) Genetic basis of endocrine disease. 5. Molecular genetics of parathyroid gland neoplasia. J Clin Endocrinol Metab 77:1108–1112PubMedCrossRefGoogle Scholar
  20. 20.
    Åkerström G (1997) Non-familial primary hyperparathyroidism. Semin Surg Oncol 13:104–113PubMedCrossRefGoogle Scholar
  21. 21.
    Wallfelt C, Gylfe E, Larsson R et al (1988) Relationship between external and cytoplasmic calcium concentrations, parathyroid hormone release and weight of parathyroid glands in human hyperparathyroidism. J Endocrinol 16:457–464CrossRefGoogle Scholar
  22. 22.
    Nygren P, Larsson R, Johansson H et al (1988) Inhibition of cell growth retains the differentiated function of bovine parathyroid cells in monolayer culture. Bone Miner 4:123–132PubMedGoogle Scholar
  23. 23.
    LeBoff MS, Shoback D, Brown EM et al (1985) Regulation of parathyroid hormone release and cytosolic calcium by extracellular calcium in dispersed and cultured bovine and pathological human parathyroid cells. J Clin Invest 75:49–57PubMedCrossRefGoogle Scholar
  24. 24.
    Wallfelt CH, Larsson R, Gylfe E et al (1988) Secretory disturbance in hyperplastic parathyroid nodules of uremic hyperparathyroidism: implication for parathyroid autotransplantation. World J Surg 12:431–438PubMedCrossRefGoogle Scholar
  25. 25.
    Mun HC, Conigrave A, Wilkinson M, Delbridge L (2005) Surgery for hyperparathyroidism: does morphology or function matter most? Surgery 138:1111–1120PubMedCrossRefGoogle Scholar
  26. 26.
    Brown EM (2007) Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab 3:122–133PubMedCrossRefGoogle Scholar
  27. 27.
    Tfelt-Hansen J, Brown EM (2005) The calcium-sensing receptor in normal physiology and pathophysiology: a review. Clin Rev Clin Lab Sci 42:35–70CrossRefGoogle Scholar
  28. 28.
    Arnold A, Kim HG, Gaz RD et al (1989) Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 83:2034–2040PubMedCrossRefGoogle Scholar
  29. 29.
    Motokura T, Bloom T, Kim HG et al (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350:512–515PubMedCrossRefGoogle Scholar
  30. 30.
    Yi Y, Nowak NJ, Pacchia AL, Morrison C (2008) Chromosome 11 genomic changes in parathyroid adenoma and hyperplasia: array CGH, FISH, and tissue microarrays. Genes Chromosomes Cancer 47:639–648PubMedCrossRefGoogle Scholar
  31. 31.
    Hsi ED, Zukerberg LR, Yang WI, Arnold A (1996) Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 81:1736–1739PubMedCrossRefGoogle Scholar
  32. 32.
    Tominaga Y, Tsuzuki T, Uchida K et al (1999) Expression of PRAD1/cyclin D1, retinoblastoma gene products, and Ki67 in parathyroid hyperplasia caused by chronic renal failure versus primary adenoma. Kidney Int 55:1375–1383PubMedCrossRefGoogle Scholar
  33. 33.
    Vasef MA, Brynes RK, Sturm M et al (1999) Expression of cyclin D1 in parathyroid carcinomas, adenomas, and hyperplasias: a paraffin immunohistochemical study. Mod Pathol 12:412–416PubMedGoogle Scholar
  34. 34.
    Carpten JD, Robbins CM, Villablanca A et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumour syndrome. Nat Genet 32:676–680PubMedCrossRefGoogle Scholar
  35. 35.
    Woodard GE, Lin L, Zhang JH et al (2005) Parafibromin, product of the hyperparathyroidism-jaw tumour syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 24:1272–1276PubMedCrossRefGoogle Scholar
  36. 36.
    Mallya SM, Gallagher JJ, Wild YK et al (2005) Abnormal parathyroid cell proliferation precedes biochemical abnormalities in a mouse model of primary hyperparathyroidism. Mol Endocrinol 19:2603–2609PubMedCrossRefGoogle Scholar
  37. 37.
    Imanishi Y, Hosokawa Y, Yoshimoto K et al (2001) Primary hyperparathyroidism caused by parathyroid-targeted overexpression of cyclin D1 in transgenic mice. J Clin Invest 107:1093–1102PubMedCrossRefGoogle Scholar
  38. 38.
    Farnebo F, Enberg U, Grimelius L et al (1997) Tumour-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab 82:3481–3486PubMedCrossRefGoogle Scholar
  39. 39.
    Gogusev J, Duchambon P, Hory B et al (1997) Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int 51:328–336PubMedCrossRefGoogle Scholar
  40. 40.
    Cetani F, Picone A, Cerrai P et al (2000) Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca(2+) set-point in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 85:4789–4794PubMedCrossRefGoogle Scholar
  41. 41.
    Corbetta S, Mantovani G, Lania A et al (2000) Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin Endocrinol (Oxf) 52:339–348CrossRefGoogle Scholar
  42. 42.
    Waller S, Kurzawinski T, Spitz L et al (2004) Neonatal severe hyperparathyroidism: genotype/phenotype correlation and the use of pamidronate as rescue therapy. Eur J Pediatr 163:589–594PubMedGoogle Scholar
  43. 43.
    Fukumoto S, Chikatsu N, Okazaki R et al (2001) Inactivating mutations of calcium-sensing receptor results in parathyroid lipohyperplasia. Diagn Mol Pathol 10:242–247PubMedCrossRefGoogle Scholar
  44. 44.
    Egbuna OI, Brown EM (2008) Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 22:129–148PubMedCrossRefGoogle Scholar
  45. 45.
    Carling T, Szabo E, Bai M et al (2000) Familial hypercalcemia and hypercalciuria caused by a novel mutation in the cytoplasmic tail of the calcium receptor. J Clin Endocrinol Metab 85:2042–2047PubMedCrossRefGoogle Scholar
  46. 46.
    Szabo E, Carling T, Hessman O et al (2002) Loss of heterozygosity in parathyroid glands of familial hypercalcemia with hypercalciuria and point mutation in calcium receptor. J Clin Endocrinol Metab 87:3961–3965PubMedCrossRefGoogle Scholar
  47. 47.
    Hosokawa Y, Pollak MR, Brown EM, Arnold A (1995) Mutational analysis of the extracellular Ca(2+)-sensing receptor gene in human parathyroid tumours. J Clin Endocrinol Metab 80:3107–3110PubMedCrossRefGoogle Scholar
  48. 48.
    Degenhardt S, Toell A, Weidemann W et al (1998) Point mutations of the human parathyroid calcium receptor gene are not responsible for non-suppressible renal hyperparathyroidism. Kidney Int 53:556–561PubMedCrossRefGoogle Scholar
  49. 49.
    Cetani F, Pinchera A, Pardi E et al (1999) No evidence for mutations in the calcium-sensing receptor gene in sporadic parathyroid adenomas. J Bone Miner Res 14:878–882PubMedCrossRefGoogle Scholar
  50. 50.
    Nemeth EF, Steffey ME, Hammerland LG et al (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci USA 95:4040–4045PubMedCrossRefGoogle Scholar
  51. 51.
    Trivedi R, Mithal A, Chattopadhyay N (2008) Recent updates on the calcium-sensing receptor as a drug target. Curr Med Chem 15:178–186PubMedCrossRefGoogle Scholar
  52. 52.
    Chertow GM, Pupim LB, Block GA et al (2007) Evaluation of Cinacalcet Therapy to Lower Cardiovascular Events (EVOLVE): rationale and design overview. Clin J Am Soc Nephrol 2:898–905PubMedCrossRefGoogle Scholar
  53. 53.
    Günther T, Chen ZF, Kim J et al (2000) Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406:199–203PubMedCrossRefGoogle Scholar
  54. 54.
    Canaff L, Zhou X, Mosesova I et al (2009) Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 30:85–92PubMedCrossRefGoogle Scholar
  55. 55.
    Correa P, Akerström G, Westin G (2002) Underexpression of Gcm2, a master regulatory gene of parathyroid gland development, in adenomas of primary hyperparathyroidism. Clin Endocrinol (Oxf) 57:501–505CrossRefGoogle Scholar
  56. 56.
    Kebebew E, Peng M, Wong MG et al (2004) GCMB gene, a master regulator of parathyroid gland development, expression, and regulation in hyperparathyroidism. Surgery 136:1261–1266PubMedCrossRefGoogle Scholar
  57. 57.
    Carling T, Kindmark A, Hellman P et al (1995) Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med 12:1309–1311CrossRefGoogle Scholar
  58. 58.
    Carling T, Rastad J, Akerstrom G, Westin G (1998) Vitamin D receptor (VDR) and parathyroid hormone messenger ribonucleic acid levels correspond to polymorphic VDR alleles in human parathyroid tumors. J Clin Endocrinol Metab 83:2255–2259PubMedCrossRefGoogle Scholar
  59. 59.
    Samander EH, Arnold A (2006) Mutational analysis of the vitamin D receptor does not support its candidacy as a tumour suppressor gene in parathyroid adenomas. J Clin Endocrinol Metab 91:5019–5021PubMedCrossRefGoogle Scholar
  60. 60.
    Carling T, Rastad J, Szabó E et al (2000) Reduced parathyroid vitamin D receptor messenger ribonucleic acid levels in primary and secondary hyperparathyroidism. J Clin Endocrinol Metab 85:2000–2003PubMedCrossRefGoogle Scholar
  61. 61.
    Sudhaker Rao D, Han ZH, Phillips ER et al (2000) Reduced vitamin D receptor expression in parathyroid adenomas: implications for pathogenesis. Clin Endocrinol (Oxf) 53:373–381CrossRefGoogle Scholar
  62. 62.
    Correa P, Akerstrom G, Westin G (2002) Exclusive underexpression of vitamin D receptor exon 1f transcripts in tumors of primary hyperparathyroidism. Eur J Endocrinol 147:671–675PubMedCrossRefGoogle Scholar
  63. 63.
    Segersten U, Correa P, Hewison M et al (2002) 25-Hydroxyvitamin D3-1alpha-hydroxylase expression in normal and pathological parathyroid glands. J Clin Endocrinol Metab 87:2967–2972PubMedCrossRefGoogle Scholar
  64. 64.
    Correa P, Segersten U, Hellman P et al (2002) Increased 25-hydroxyvitamin D3 1alpha-hydroxylase and reduced 25-hydroxyvitamin D3 24-hydroxylase expression in parathyroid tumors: new prospects for treatment of hyperparathyroidism with vitamin D. J Clin Endocrinol Metab 87:5826–5829PubMedCrossRefGoogle Scholar
  65. 65.
    Segersten U, Björklund P, Hellman P et al (2007) Potentiating effects of nonactive/active vitamin D analogues and ketoconazole in parathyroid cells. Clin Endocrinol (Oxf) 66:399–404CrossRefGoogle Scholar
  66. 66.
    Kilav R, Silver J, Naveh-Many T (2001) A conserved cis-acting element in the parathyroid hormone 3′-untranslated region is sufficient for regulation of RNA stability by calcium and phosphate. J Biol Chem 276:8727–8733PubMedCrossRefGoogle Scholar
  67. 67.
    Costa-Guda J, Lauter K, Naveh-Many T et al (2006) Mutational analysis of the PTH 3′-untranslated region in parathyroid disorders. Clin Endocrinol (Oxf) 65:806–809CrossRefGoogle Scholar
  68. 68.
    Chandrasekharappa SC, Guru SC, Manickam P et al (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404–407PubMedCrossRefGoogle Scholar
  69. 69.
    Lemmens I, Van de Ven WJ, Kas K, Zhang CX et al (1997) Identification of the multiple endocrine neoplasia type 1 (MEN1) gene: the European Consortium on MEN1. Hum Mol Genet 6:1177–1183PubMedCrossRefGoogle Scholar
  70. 70.
    Marx SJ (2005) Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 5:367–375PubMedCrossRefGoogle Scholar
  71. 71.
    Heppner C, Kester MB, Agarwal SK et al (1997) Somatic mutation of the MEN1 gene in parathyroid tumours. Nat Genet 16:375–378PubMedCrossRefGoogle Scholar
  72. 72.
    Carling T, Correa P, Hessman O et al (1998) Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab 83:2960–2963PubMedCrossRefGoogle Scholar
  73. 73.
    Farnebo F, Teh BT, Kytölä S et al (1998) Alterations of the MEN1 gene in sporadic parathyroid tumours. J Clin Endocrinol Metab 83:2627–2630PubMedCrossRefGoogle Scholar
  74. 74.
    Karges W, Jostarndt K, Maier S et al (2000) Multiple endocrine neoplasia type 1 (MEN1) gene mutations in a subset of patients with sporadic and familial primary hyperparathyroidism target the coding sequence but spare the promoter region. J Endocrinol 166:1–9PubMedCrossRefGoogle Scholar
  75. 75.
    Miedlich S, Krohn K, Lamesch P et al (2000) Frequency of somatic MEN1 gene mutations in monoclonal parathyroid tumours of patients with primary hyperparathyroidism. Eur J Endocrinol 143:47–54PubMedCrossRefGoogle Scholar
  76. 76.
    Uchino S, Noguchi S, Sato M et al (2000) Screening of the MEN1 gene and discovery of germ-line and somatic mutations in apparently sporadic parathyroid tumours. Cancer Res 60:5553–5557PubMedGoogle Scholar
  77. 77.
    Cetani F, Pardi E, Vignali E et al (2002) MEN1 gene alterations do not correlate with the phenotype of sporadic primary hyperparathyroidism. J Endocrinol Invest 25:508–512PubMedGoogle Scholar
  78. 78.
    Correa P, Juhlin C, Rastad J et al (2002) Allelic loss in clinically and screening-detected primary hyperparathyroidism. Clin Endocrinol (Oxf) 56:113–117CrossRefGoogle Scholar
  79. 79.
    Tanaka C, Uchino S, Noguchi S et al (2002) Biallelic inactivation by somatic mutations of the MEN1 gene in sporadic parathyroid tumours. Cancer Lett 175:175–179PubMedCrossRefGoogle Scholar
  80. 80.
    Falchetti A, Bale AE, Amorosi A et al (1993) Progression of uremic hyperparathyroidism involves allelic loss on chromosome 11. J Clin Endocrinol Metab 76:139–144PubMedCrossRefGoogle Scholar
  81. 81.
    Farnebo F, Farnebo LO, Nordenström J, Larsson C (1997) Allelic loss on chromosome 11 is uncommon in parathyroid glands of patients with hypercalcaemic secondary hyperparathyroidism. Eur J Surg 163:331–337PubMedGoogle Scholar
  82. 82.
    Tahara H, Imanishi Y, Yamada T et al (2000) Rare somatic inactivation of the multiple endocrine neoplasia type 1 gene in secondary hyperparathyroidism of uremia. J Clin Endocrinol Metab 85:4113–4117PubMedCrossRefGoogle Scholar
  83. 83.
    Forsberg L, Villablanca A, Välimäki S et al (2001) Homozygous inactivation of the MEN1 gene as a specific somatic event in a case of secondary hyperparathyroidism. Eur J Endocrinol 145:415–420PubMedCrossRefGoogle Scholar
  84. 84.
    Libutti SK, Crabtree JS, Lorang D et al (2003) Parathyroid gland-specific deletion of the mouse MEN1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 63:8022–8028PubMedGoogle Scholar
  85. 85.
    Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN 1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32PubMedCrossRefGoogle Scholar
  86. 86.
    Balogh K, Rácz K, Patócs A, Hunyady L (2006) Menin and its interacting proteins: elucidation of menin function. Trends Endocrinol Metab 17:357–364PubMedCrossRefGoogle Scholar
  87. 87.
    Dreijerink KM, Höppener JW, Timmers HM, Lips CJ (2006) Mechanisms of disease: multiple endocrine neoplasia type 1: relation to chromatin modifications and transcription regulation. Nat Clin Pract Endocrinol Metab 2:562–570PubMedCrossRefGoogle Scholar
  88. 88.
    Agarwal SK, Guru SC, Heppner C et al (1999) Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96:143–152PubMedCrossRefGoogle Scholar
  89. 89.
    Gobl AE, Berg M, Lopez-Egido JR et al (1999) Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim Biophys Acta 1447:51–56PubMedGoogle Scholar
  90. 90.
    Agarwal SK, Novotny EA, Crabtree JS et al (2003) Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 100:10770–10775PubMedCrossRefGoogle Scholar
  91. 91.
    Kim H, Lee JE, Cho EJ et al (2003) Menin, a tumour suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 63:6135–6139PubMedGoogle Scholar
  92. 92.
    Kaji H, Canaff L, Lebrun JJ et al (2001) Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signalling. Proc Natl Acad Sci USA 98:3837–3842PubMedCrossRefGoogle Scholar
  93. 93.
    Shattuck TM, Costa J, Bernstein M et al (2002) Mutational analysis of Smad3, a candidate tumour suppressor implicated in TGF-beta and menin pathways, in parathyroid adenomas and enteropancreatic endocrine tumours. J Clin Endocrinol Metab 87:3911–3914PubMedCrossRefGoogle Scholar
  94. 94.
    Heppner C, Bilimoria KY, Agarwal SK et al (2001) The tumour suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 20:4917–4925PubMedCrossRefGoogle Scholar
  95. 95.
    Corbetta S, Vicentini L, Ferrero S et al (2005) Activity and function of the nuclear factor kappaB pathway in human parathyroid tumours. Endocr Relat Cancer 12:929–937PubMedCrossRefGoogle Scholar
  96. 96.
    Hughes CM, Rozenblatt-Rosen O, Milne TA et al (2004) Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13:587–597PubMedCrossRefGoogle Scholar
  97. 97.
    Milne TA, Hughes CM, Lloyd R et al (2005) Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 102:749–754PubMedCrossRefGoogle Scholar
  98. 98.
    Karnik SK, Hughes CM, Gu X et al (2005) Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 102:14659–14664PubMedCrossRefGoogle Scholar
  99. 99.
    Buchwald PC, Akerström G, Westin G (2004) Reduced p18INK4c, p21CIP1/WAF1 and p27KIP1 mRNA levels in tumours of primary and secondary hyperparathyroidism. Clin Endocrinol (Oxf) 60:389–393CrossRefGoogle Scholar
  100. 100.
    Lindberg D, Åkerström G, Westin G (2008) Evaluation of CDKN2C/p18, CDKN1B/p27 and CDKN2B/p15 mRNA expression, and CpG methylation status in sporadic and MEN1-associated pancreatic endocrine tumours. Clin Endocrinol (Oxf) 68:271–277Google Scholar
  101. 101.
    Lindberg D, Åkerström G, Westin G (2007) Mutational analysis of p27 (CDKN1B) and p18 (CDKN2C) in sporadic pancreatic endocrine tumours argues against tumour-suppressor function. Neoplasia 9:533–535PubMedCrossRefGoogle Scholar
  102. 102.
    Lauter KB, Arnold A (2008) Mutational analysis of CDKN1B, a candidate tumour-suppressor gene, in refractory secondary/tertiary hyperparathyroidism. Kidney Int 73:1137–1140PubMedCrossRefGoogle Scholar
  103. 103.
    Yokoyama A, Somervaille TC, Smith KS et al (2005) The menin tumour suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123:207–218PubMedCrossRefGoogle Scholar
  104. 104.
    Shen HC, Rosen JE, Yang LM et al (2008) Parathyroid tumour development involves deregulation of homeobox genes. Endocr Relat Cancer 15:267–275PubMedCrossRefGoogle Scholar
  105. 105.
    Willeke F, Hauer MP, Buchcik R et al (1998) Multiple endocrine neoplasia type 2-associated RET proto-oncogene mutations do not contribute to the pathogenesis of sporadic parathyroid tumours. Surgery 124:484–490PubMedGoogle Scholar
  106. 106.
    Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51PubMedCrossRefGoogle Scholar
  107. 107.
    Björklund P, Åkerström G, Westin G (2007) Accumulation of nonphosphorylated β-catenin and c-myc in primary and uremic secondary hyperparathyroid tumours. J Clin Endocrinol Metab 92:338–344PubMedCrossRefGoogle Scholar
  108. 108.
    Björklund P, Lindberg D, Åkerström G, Westin G (2008) Stabilizing mutation of CTNNB1/β-catenin in a large series of parathyroid tumours of Swedish patients. Mol Cancer 7:53PubMedCrossRefGoogle Scholar
  109. 109.
    Costa-Guda J, Arnold A (2007) Absence of stabilizing mutations of beta-catenin encoded by CTNNB1 exon 3 in a large series of sporadic parathyroid adenomas. J Clin Endocrinol Metab 92:1564–1566PubMedCrossRefGoogle Scholar
  110. 110.
    Björklund P, Åkerström G, Westin G (2007) A LPR5 receptor with internal deletion in hyperparathyroid tumours with implications for deregulated Wnt/β-catenin signalling. PLoS Med 4:e328PubMedCrossRefGoogle Scholar
  111. 111.
    Björklund P, Åkerström G, Westin G (2007) Activated beta-catenin in the novel human parathyroid tumour cell line sHPT-1. Biochem Biophys Res Commun 352:532–536PubMedCrossRefGoogle Scholar
  112. 112.
    Rozenblatt-Rosen O, Hughes CM, Nannnepaga SJ et al (2005) The parafibromin tumour suppressor protein is part of a human Paf1 complex. Mol Cell Biol 25:612–620PubMedCrossRefGoogle Scholar
  113. 113.
    Tan MH, Morrison C, Wang P et al (2004) Loss of parafibromin immunoreactivity is a distinguishing feature of parathyroid carcinoma. Clin Cancer Res 10:6629–6637PubMedCrossRefGoogle Scholar
  114. 114.
    Dwight T, Nelson AE, Theodosopoulos G et al (2002) Independent genetic events associated with the development of multiple parathyroid tumors in patients with primary hyperparathyroidism. Am J Pathol 161:1299–1306PubMedGoogle Scholar
  115. 115.
    Åkerström G, Hellman P (2003) Primary hyperparathyroidism. Curr Opin Oncol 16:1–7Google Scholar
  116. 116.
    Farnebo F, Teh BT, Dotzenrath C et al (1997) Differential loss of heterozygosity in familial, sporadic, and uremic hyperparathyroidism. Hum Genet 99:342–349PubMedCrossRefGoogle Scholar
  117. 117.
    Chudek J, Ritz E, Kovacs G (1998) Genetic abnormalities in parathyroid nodules of uremic patients. Clin Cancer Res 4:211–214PubMedGoogle Scholar
  118. 118.
    Nagy A, Chudek J, Kovacs G (2001) Accumulation of allelic changes at chromosomes 7p, 18q, and 2 in parathyroid lesions of uremic patients. Lab Invest 81:527–533PubMedGoogle Scholar
  119. 119.
    Imanishi Y, Tahara H, Palanisamy N et al (2002) Clonal chromosomal defects in the molecular pathogenesis of refractory hyperparathyroidism of uremia. J Am Soc Nephrol 13:1490–1498PubMedCrossRefGoogle Scholar
  120. 120.
    Farnebo F, Kytola S, Teh BT et al (1999) Alternative genetic pathways in parathyroid tumourigenesis. J Clin Endocrinol Metab 84:3775–3780PubMedCrossRefGoogle Scholar
  121. 121.
    Haven CJ, Howell VM, Eilers PH et al (2004) Gene expression of parathyroid tumours: molecular subclassification and identification of the potential malignant phenotype. Cancer Res 64:7405–7411PubMedCrossRefGoogle Scholar
  122. 122.
    Morrison C, Farrar W, Kneile J et al (2004) Molecular classification of parathyroid neoplasia by gene expression profiling. Am J Pathol 165:565–576PubMedGoogle Scholar
  123. 123.
    Forsberg L, Björck E, Hashemi J et al (2005) Distinction in gene expression profiles demonstrated in parathyroid adenomas by high-density oligoarray technology. Eur J Endocrinol 152:459–470PubMedCrossRefGoogle Scholar
  124. 124.
    Rosen JE, Costouros NG, Lorang D et al (2005) Gland size is associated with changes in gene expression profiles in sporadic parathyroid adenomas. Ann Surg Oncol 12:412–416PubMedCrossRefGoogle Scholar
  125. 125.
    Velázquez-Fernández D, Laurell C, Saqui-Salces M et al (2006) Differential RNA expression profile by cDNA microarray in sporadic primary hyperparathyroidism (pHPT): primary parathyroid hyperplasia versus adenoma. World J Surg 30:705–713PubMedCrossRefGoogle Scholar
  126. 126.
    Schachter PP, Ayesh S, Matouk I et al (2007) Differential expression of kinase genes in primary hyperparathyroidism: adenoma versus normal and hyperplastic parathyroid tissue. Arch Pathol Lab Med 131:126–130PubMedGoogle Scholar
  127. 127.
    Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedCrossRefGoogle Scholar
  128. 128.
    Sugiura H, Yoshida T, Tsuchiya K et al (2005) Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant 20:2636–2645PubMedCrossRefGoogle Scholar
  129. 129.
    Ikushima M, Rakugi H, Ishikawa K et al (2006) Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 339:827–832PubMedCrossRefGoogle Scholar
  130. 130.
    Medici D, Razzaque MS, Deluca S et al (2008) FGF-23-Klotho signalling stimulates proliferation and prevents vitamin D-induced apoptosis. J Cell Biol 182:459–465PubMedCrossRefGoogle Scholar
  131. 131.
    Imura A, Tsuji Y, Murata M et al (2007) α-Klotho as a regulator of calcium homeostasis. Science 316:1615–1618PubMedCrossRefGoogle Scholar
  132. 132.
    Chang Q, Hoefs S, van der Kemp AW et al (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493PubMedCrossRefGoogle Scholar
  133. 133.
    Lu P, Boros S, Chang Q et al (2008) The beta-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol Dial Transplant 11:3397–3402CrossRefGoogle Scholar
  134. 134.
    Lu L, Katsaros D, Wiley A et al (2008) Klotho expression in epithelial ovarian cancer and its association with insulin-like growth factors and disease progression. Cancer Invest 26:185–192PubMedCrossRefGoogle Scholar
  135. 135.
    Wolf I, Levanon-Cohen S, Bose S et al (2008) Klotho: a tumour suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094–7105PubMedCrossRefGoogle Scholar
  136. 136.
    Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signalling in a mammalian model of accelerated aging. Science 317:803–806PubMedCrossRefGoogle Scholar
  137. 137.
    Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signalling by klotho. J Biol Chem 281:6120–6123PubMedCrossRefGoogle Scholar
  138. 138.
    Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774PubMedCrossRefGoogle Scholar
  139. 139.
    Goetz R, Beenken A, Ibrahimi OA et al (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428PubMedCrossRefGoogle Scholar
  140. 140.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008PubMedGoogle Scholar
  141. 141.
    Krajisnik T, Björklund P, Marsell R et al (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131PubMedCrossRefGoogle Scholar
  142. 142.
    Björklund P, Krajisnik T, Akerström G et al (2008) Type I membrane klotho expression is decreased and inversely correlated to serum calcium in primary hyperparathyroidism. J Clin Endocrinol Metab 93:4152–4157PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang H, Li Y, Fan Y et al (2008) Klotho is a target gene of PPAR-gamma. Kidney Int 74:732–739PubMedCrossRefGoogle Scholar
  144. 144.
    Brownstein CA, Adler F, Nelson-Williams C et al (2008) A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA 105:3455–3460PubMedCrossRefGoogle Scholar
  145. 145.
    Åkerström G, Hellman P, Björklund P (2008) Parathyroid carcinoma. In: Hay I, Wass JAH (eds) Clinical endocrinology, 2nd edn. Blackwell, ChichesterGoogle Scholar
  146. 146.
    DeLellis RA (2005) Parathyroid carcinoma: an overview. Adv Anat Pathol 12:53–61PubMedCrossRefGoogle Scholar
  147. 147.
    Haven CJ, van Puijenbrock M, Karperien M et al (2004) Differential expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q in parathyroid carcinoma. J Pathol 202:86–94PubMedCrossRefGoogle Scholar
  148. 148.
    Fernandez-Ranvier GG, Khanafshar E, Tacha D et al (2009) Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer 115:334–444PubMedCrossRefGoogle Scholar
  149. 149.
    Hunt JL, Carty SE, Yim IH et al (2005) Allelic loss in parathyroid neoplasia can help characterize malignancy. Am J Surg Pathol 29:1049–1055PubMedGoogle Scholar
  150. 150.
    Rogers SE, Perrier ND (2006) Parathyroid carcinoma. Curr Opin Oncol 18:16–22CrossRefGoogle Scholar
  151. 151.
    Rawat N, Khetan N, Williams DW et al (2005) Parathyroid carcinoma. Br J Surg 92:1345–1353PubMedCrossRefGoogle Scholar
  152. 152.
    Mittendorf EA, McHenry CR (2005) Parathyroid carcinoma. J Surg Oncol 89:136–142PubMedCrossRefGoogle Scholar
  153. 153.
    Välimäki S, Forsberg L, Farnebo LO et al (2002) Distinct target regions for chromosome 1p deletions in parathyroid adenomas and carcinomas. Int J Oncol 21:727–735PubMedGoogle Scholar
  154. 154.
    Shattuck TM, Välimäki S, Obara T et al (2003) Somatic and germ-line mutations of the HRTP2 gene in sporadic parathyroid carcinoma. N Engl J Med 349:1722–1729PubMedCrossRefGoogle Scholar
  155. 155.
    Howell VM, Haven CJ, Kahnoski K et al (2003) HRPT2 mutations are associated with malignancy in sporadic parathyroid tumors. J Med Genet 40:657–663PubMedCrossRefGoogle Scholar
  156. 156.
    Gill AJ, Clarkson A, Gimm O et al (2006) Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 30:1140–1149PubMedGoogle Scholar
  157. 157.
    Cetani F, Ambrogini E, Viacava P et al (2007) Should parafibromin staining replace HRPT2 gene analysis as an additional tool for histological diagnosis of parathyroid carcinoma? Eur J Endocrinol 156:547–554PubMedCrossRefGoogle Scholar
  158. 158.
    Haven CJ, van Puijenbroek M, Tan MH et al (2007) Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin Endocrinol (Oxf) 67:370–376CrossRefGoogle Scholar
  159. 159.
    Hewitt KM, Sharma PK, Samowitz W, Hobbs M (2007) Aberrant methylation of the HRPT2 gene in parathyroid carcinoma. Ann Otol Rhinol Laryngol 116:928–933PubMedGoogle Scholar
  160. 160.
    Juhlin CC, Villablanca A, Sandelin K et al (2007) Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer 14:501–512PubMedCrossRefGoogle Scholar
  161. 161.
    Juhlin CC, Haglund F, Villablanca A et al (2009) Loss of expression for the Wnt pathway components adenomatous polyposis coli and glycogen synthase kinase 3-β in parathyroid carcinomas. Int J Oncol 34:481–492PubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2009

Authors and Affiliations

  • Gunnar Westin
    • 1
  • Peyman Björklund
    • 1
  • Göran Åkerström
    • 1
  1. 1.Department of Surgical SciencesUppsala University HospitalUppsalaSweden

Personalised recommendations