World Journal of Surgery

, Volume 32, Issue 6, pp 976–986

Recent Advances in Molecular Mechanisms of Abdominal Aortic Aneurysm Formation

  • Suman Annambhotla
  • Sebastian Bourgeois
  • Xinwen Wang
  • Peter H. Lin
  • Qizhi Yao
  • Changyi Chen
Article

Abstract

Abdominal aortic aneurysm (AAA) is an increasingly common clinical condition with fatal implications. It is associated with advanced age, male gender, cigarette smoking, atherosclerosis, hypertension, and genetic predisposition. Although significant evidence has emerged in the last decade, the molecular mechanisms of AAA formation remain poorly understood. Currently, the treatment for AAA remains primarily surgical with the lone innovation of endovascular therapy. With advances in the human genome, understanding precisely which molecules and genes mediate AAA development and blocking their activity at the molecular level could lead to important new discoveries and therapies. This review summarizes recent updates in molecular mechanisms of AAA formation, including animal models, autoimmune components, infection, key molecules and cytokines, mechanical forces, genetics, and pharmacotherapy. This review will be helpful to those who want to recognize the newest endeavors within the field and identify possible lines of investigation in AAA.

References

  1. 1.
    Bengtsson H, Bergqvist D, Sternby NH (1992) Increasing prevalence of abdominal aortic aneurysms. A necropsy study. Eur J Surg 158:19-23Google Scholar
  2. 2.
    Sinha I, Cho BS, Roelofs KJ et al (2006) Female gender attenuates cytokine and chemokine expression and leukocyte recruitment in experimental rodent abdominal aortic aneurysms. Ann N Y Acad Sci 1085:367-379PubMedCrossRefGoogle Scholar
  3. 3.
    Johnston KW, Rutherford RB, Tilson MD et al (1991) Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg 13:452-458PubMedCrossRefGoogle Scholar
  4. 4.
    Abdul-Hussien H, Soekhoe RG, Weber E et al (2007) Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases. Am J Pathol 170:809-817PubMedCrossRefGoogle Scholar
  5. 5.
    Dawson J, Choke E, Sayed S et al (2006) Pharmacotherapy of abdominal aortic aneurysms. Curr Vasc Pharmacol 4:129-149PubMedCrossRefGoogle Scholar
  6. 6.
    Bergoeing MP, Thompson RW, Curci JA (2006) Pharmacological targets in the treatment of abdominal aortic aneurysms. Expert Opin Ther Targets 10:547-559PubMedCrossRefGoogle Scholar
  7. 7.
    Daugherty A, Cassis LA (2004) Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24:429-434PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson RW, Curci JA, Ennis TL et al (2006) Pathophysiology of abdominal aortic aneurysms: insights from the elastase-induced model in mice with different genetic backgrounds. Ann N Y Acad Sci 1085:59-73PubMedCrossRefGoogle Scholar
  9. 9.
    Wills A, Thompson MM, Crowther M et al (1996) Elastase-induced matrix degradation in arterial organ cultures: an in vitro model of aneurysmal disease. J Vasc Surg 24:667-679PubMedCrossRefGoogle Scholar
  10. 10.
    Anidjar S, Salzmann JL, Gentric D et al (1990) Elastase-induced experimental aneurysms in rats. Circulation 82:973-981PubMedGoogle Scholar
  11. 11.
    Sigala F, Papalambros E, Kotsinas A et al (2005) Relationship between iNOS expression and aortic cell proliferation and apoptosis in an elastase-induced model of aorta aneurysm and the effect of 1400 W administration. Surgery 137:447-456PubMedCrossRefGoogle Scholar
  12. 12.
    Sho E, Sho M, Nanjo H et al (2005) Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms. J Vasc Surg 41:844-852PubMedCrossRefGoogle Scholar
  13. 13.
    Freestone T, Turner RJ, Higman DJ et al (1997) Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol 17:10-17PubMedGoogle Scholar
  14. 14.
    Chiou AC, Chiu B, Pearce WH (2001) Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res 99:371-376PubMedCrossRefGoogle Scholar
  15. 15.
    Cassis LA, Helton MJ, Howatt DA et al (2005) Aldosterone does not mediate angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Br J Pharmacol 144:443-448PubMedCrossRefGoogle Scholar
  16. 16.
    Gitlin JM, Trivedi DB, Langenbach R et al (2007) Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res 73:227-236PubMedCrossRefGoogle Scholar
  17. 17.
    Kuzuya M, Kanda S, Sasaki T et al (2003) Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 108:1375-1381PubMedCrossRefGoogle Scholar
  18. 18.
    Godin D, Ivan E, Johnson C et al (2000) Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 102:2861-2866PubMedGoogle Scholar
  19. 19.
    Shimizu K, Shichiri M, Libby P et al (2004) Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J Clin Invest 114:300-308PubMedGoogle Scholar
  20. 20.
    Powell JT, Greenhalgh RM (1995) Mode of genetic inheritance of abdominal aortic aneurysm: still no clear answers. Chirurg 66:841-844PubMedGoogle Scholar
  21. 21.
    Monux G, Serrano FJ, Vigil P et al (2003) Role of HLA-DR in the pathogenesis of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 26:211-214PubMedCrossRefGoogle Scholar
  22. 22.
    Ogata T, Gregoire L, Goddard KA et al (2006) Evidence for association between the HLA-DQA locus and abdominal aortic aneurysms in the Belgian population: a case control study BMC. Med Genet 7:67Google Scholar
  23. 23.
    Badger SA, Soong CV, O’Donnell ME et al (2007) The role of human leukocyte antigen genes in the formation of abdominal aortic aneurysms. J Vasc Surg 45:475-480PubMedCrossRefGoogle Scholar
  24. 24.
    Seko Y, Takahashi N, Sato O et al (1998) Restricted usage of T-cell receptor Valpha-Vbeta genes in infiltrating cells in the aortic tissue of a patient with atherosclerotic aortic aneurysm. Int Angiol 17:89-92PubMedGoogle Scholar
  25. 25.
    Hobbs SD, Claridge MW, Quick CR et al (2003) LDL cholesterol is associated with small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 26:618-622PubMedCrossRefGoogle Scholar
  26. 26.
    Ohara N, Miyata T, Kurata A et al (2000) Ten years’ experience of aortic aneurysm associated with systemic lupus erythematosus. Eur J Vasc Endovasc Surg 19:288-293PubMedCrossRefGoogle Scholar
  27. 27.
    Koutoulidis V, Chatziioannou A, Kostopoulos C et al (2005) Primary antiphospholipid syndrome: a unique presentation with multiple visceral aneurysms. Ann Rheum Dis 64:1793-1794PubMedCrossRefGoogle Scholar
  28. 28.
    Miller DV, Oderich GS, Aubry MC et al (2004) Surgical pathology of infected aneurysms of the descending thoracic and abdominal aorta: clinicopathologic correlations in 29 cases (1976 to 1999). Hum Pathol 35:1112-1120PubMedCrossRefGoogle Scholar
  29. 29.
    Sodeck G, Domanovits H, Khanakah G et al (2004) The role of Chlamydia pneumoniae in human aortic disease–a hypothesis revisited. Eur J Vasc Endovasc Surg 28:547-552PubMedCrossRefGoogle Scholar
  30. 30.
    Pupka A, Skora J, Kaluza G et al (2004) The detection of Chlamydia pneumoniae in aneurysm of abdominal aorta and in normal aortic wall of organ donors. Folia Microbiol (Praha) 49:79-82CrossRefGoogle Scholar
  31. 31.
    Falkensammer B, Duftner C, Seiler R et al (2007) Lack of microbial DNA in tissue specimens of patients with abdominal aortic aneurysms and positive Chlamydiales serology. Eur J Clin Microbiol Infect Dis 26:141-145PubMedCrossRefGoogle Scholar
  32. 32.
    Koullias GJ, Korkolis DP, Hatzaras IS et al (2004) Immunohistochemical testing for Helicobacter pylori infection in ascending aortic aneurysms and penetrating aortic ulcers. Am J Cardiol 93:122-123PubMedCrossRefGoogle Scholar
  33. 33.
    Westphal M, Lautenschlager I, Backhaus C et al (2006) Cytomegalovirus and proliferative signals in the vascular wall of CABG patients. Thorac Cardiovasc Surg 54:219-226PubMedCrossRefGoogle Scholar
  34. 34.
    Yonemitsu Y, Komori K, Sueishi K et al (1998) Possible role of cytomegalovirus infection in the pathogenesis of human vascular diseases. Nippon Rinsho 56:102-108PubMedGoogle Scholar
  35. 35.
    Kilic A, Onguru O, Tugcu H et al (2006) Detection of cytomegalovirus and Helicobacter pylori DNA in arterial walls with grade III atherosclerosis by PCR. Pol J Microbiol 55:333-337PubMedGoogle Scholar
  36. 36.
    Dawson J, Cockerill G, Choke E et al (2006) Circulating cytokines in patients with abdominal aortic aneurysms. Ann N Y Acad Sci 1085:324-326PubMedCrossRefGoogle Scholar
  37. 37.
    Pearce WH, Shively VP (2006) Abdominal aortic aneurysm as a complex multifactorial disease: interactions of polymorphisms of inflammatory genes, features of autoimmunity, and current status of MMPs. Ann N Y Acad Sci 1085:117-132PubMedCrossRefGoogle Scholar
  38. 38.
    Sukhova GK, Shi GP (2006) Do cathepsins play a role in abdominal aortic aneurysm pathogenesis? Ann N Y Acad Sci 1085:161-169PubMedCrossRefGoogle Scholar
  39. 39.
    Golledge J, Muller J, Shephard N et al (2007) Association between osteopontin and human abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 27:655-660PubMedCrossRefGoogle Scholar
  40. 40.
    Neptune ER, Frischmeyer PA, Arking DE et al (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407-411PubMedCrossRefGoogle Scholar
  41. 41.
    Habashi JP, Judge DP, Holm TM et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117-121PubMedCrossRefGoogle Scholar
  42. 42.
    Raghavan ML, Vorp DA, Federle MP et al (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31:760-769PubMedCrossRefGoogle Scholar
  43. 43.
    Khanafer KM, Bull JL, Upchurch GR Jr et al (2007) Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann Vasc Surg 21:67-74PubMedGoogle Scholar
  44. 44.
    Thompson RW, Geraghty PJ, Lee JK (2002) Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 39:110-230PubMedCrossRefGoogle Scholar
  45. 45.
    Vollmar JF, Paes E, Pauschinger P et al (1989) Aortic aneurysms as late sequelae of above-knee amputation. Lancet 2:834-835PubMedCrossRefGoogle Scholar
  46. 46.
    Kuivaniemi H, Shibamura H, Arthur C et al (2003) Familial abdominal aortic aneurysms: collection of 233 multiplex families. J Vasc Surg 37:340-345PubMedCrossRefGoogle Scholar
  47. 47.
    Verloes A, Sakalihasan N, Koulischer L et al (1995) Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg 21:646-655PubMedCrossRefGoogle Scholar
  48. 48.
    Majumder PP, St Jean PL, Ferrell RE et al (1991) On the inheritance of abdominal aortic aneurysm. Am J Hum Genet 48:164-170PubMedGoogle Scholar
  49. 49.
    Guo D, Hasham S, Kuang SQ et al (2001) Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13-14. Circulation 103:2461-2468PubMedGoogle Scholar
  50. 50.
    Pannu H, Avidan N, Tran-Fadulu V et al (2006) Genetic basis of thoracic aortic aneurysms and dissections: potential relevance to abdominal aortic aneurysms. Ann N Y Acad Sci 1085:242-255PubMedCrossRefGoogle Scholar
  51. 51.
    Shibamura H, Olson JM, van Vlijmen-Van Keulen C et al (2004) Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 109:2103-2108PubMedCrossRefGoogle Scholar
  52. 52.
    Bown MJ, Burton PR, Horsburgh T et al (2003) The role of cytokine gene polymorphisms in the pathogenesis of abdominal aortic aneurysms: a case-control study. J Vasc Surg 37:999-1005PubMedCrossRefGoogle Scholar
  53. 53.
    Massart F, Marini F, Menegato A et al (2004) Allelic genes involved in artery compliance and susceptibility to sporadic abdominal aortic aneurysm. J Steroid Biochem Mol Biol 92:413-418PubMedCrossRefGoogle Scholar
  54. 54.
    Kuivaniemi H, Ogata T (2006) Highlights of the recent literature on abdominal aortic aneurysm research. Ann Vasc Surg 20:1-4PubMedCrossRefGoogle Scholar
  55. 55.
    Aoki H, Yoshimura K, Matsuzaki M (2007) Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy. J Mol Med 85:1077-1088PubMedCrossRefGoogle Scholar
  56. 56.
    Prall AK, Longo GM, Mayhan WG et al (2002) Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg 35:923-929PubMedCrossRefGoogle Scholar
  57. 57.
    Mosorin M, Juvonen J, Biancari F et al (2001) Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J Vasc Surg 34:606-610PubMedCrossRefGoogle Scholar
  58. 58.
    Bigatel DA, Elmore JR, Carey DJ et al (1999) The matrix metalloproteinase inhibitor BB-94 limits expansion of experimental abdominal aortic aneurysms. J Vasc Surg 29:130-138; discussion 138-139PubMedCrossRefGoogle Scholar
  59. 59.
    King VL, Trivedi DB, Gitlin JM et al (2006) Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 26:1137-1143PubMedCrossRefGoogle Scholar
  60. 60.
    Walton LJ, Franklin IJ, Bayston T et al (1999) Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100:48-54PubMedGoogle Scholar
  61. 61.
    Isenburg JC, Simionescu DT, Starcher BC et al (2007) Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation 115:1729-1737PubMedCrossRefGoogle Scholar
  62. 62.
    Yoshimura K, Aoki H, Ikeda Y et al (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11:1330-1338PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshimura K, Aoki H, Ikeda Y et al (2006) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase in mice. Ann N Y Acad Sci 1085:74-81PubMedCrossRefGoogle Scholar
  64. 64.
    Hackam DG, Thiruchelvam D, Redelmeier DA (2006) Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 368:659-665PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson WR, Evans J, Bell PR et al (2005) HMG-CoA reductase inhibitors (statins) decrease MMP-3 and MMP-9 concentrations in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 30:259-262PubMedCrossRefGoogle Scholar
  66. 66.
    Hannawa KK, Cho BS, Sinha I et al (2006) Attenuation of experimental aortic aneurysm formation in P-selectin knockout mice. Ann N Y Acad Sci 1085:353-359PubMedCrossRefGoogle Scholar
  67. 67.
    Middleton RK, Lloyd GM, Bown MJ et al (2007) The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study. J Vasc Surg 45:574-580PubMedCrossRefGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2008

Authors and Affiliations

  • Suman Annambhotla
    • 1
  • Sebastian Bourgeois
    • 1
  • Xinwen Wang
    • 1
  • Peter H. Lin
    • 1
  • Qizhi Yao
    • 1
  • Changyi Chen
    • 1
    • 2
  1. 1.Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryMichael E. DeBakey VA Medical Center, Baylor College of MedicineHoustonUSA
  2. 2.Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonUSA

Personalised recommendations