World Journal of Surgery

, Volume 30, Issue 5, pp 860–871

Isthmus-Preserving Total Bilobectomy: An Adequate Operation for C-Cell Hyperplasia

  • Robert Arnulf Wahl
  • Christian Vorländer
  • Susanne Kriener
  • Johanna Pedall
  • Martin Spitza
  • Martin-Leo Hansmann



Autopsy studies show that C cells deriving from the ultimobranchial body and migrating into the thyroid do not reach the isthmus region and are distributed along the vertical axes of thyroid lobes. This was confirmed in a surgical series of 58 patients (34 with preoperatively normal and 24 with elevated serum calcitonin) where no calcitonin-positive cells were demonstrable immunohistochemically within separately investigated isthmi. Consequently, isthmus-preserving total bilateral lobectomy (IPTB) may be regarded as an adequate surgical procedure for C-cell hyperplasia (CCH).

Patients and Methods

IPTB was performed from October 2001 to December 2004 in 64 patients, 59 patients with nodular goiter and slightly to moderately elevated serum calcitonin (stimulated under 500 pg/ml) (group A, apparently sporadic cases) and in 5 patients undergoing prophylactic surgery for hereditary medullary thyroid carcinoma (MTC) with intermediate- or low-risk RET mutations (non-634) (group B). The surgical procedure focused on meticulous total extracapsular resection of both thyroid lobes, preservation of an isthmus remnant of about 3 ml (smaller in children), and histologic workup of the border zones of resection in addition to that of the completely removed lobes. When malignancy could be proven intraoperatively (7 patients) or when the isthmus turned out to contain nodular lesions (4 patients), completion total thyroidectomy (plus lymphadenectomy) was performed as a one-stage procedure. Second-stage total thyroidectomy was performed in 3 cases. Thus, IPTB was the definitive surgical procedure in 50 patients (45 of group A and all 5 of group B).


In all of the 50 definite IPTB cases, postoperative serum calcitonin was below the measurable limit (2 pg/ml); stimulated calcitonin was below the measurable limit in 47 (including all of group B) and was measurable in 3 sporadic cases in a lower-normal range between 2.4 and 3.5 pg/ml. Genetic screening of the apparently sporadic cases with CCH was positive in one (codon 791). The risk of recurrent laryngeal nerve paralysis seems not to be elevated (0% permanent); permanent hypocalcemia occurred in 1 patient (2%). Follow-up data of 37 patients, median 18 (6–36) months, showed continuously nonmeasurable serum calcitonin with one exception, where it was in the normal range after 18 months. All IPTB patients are still under substitution therapy with L-thyroxine (median 125 μg/day) with decreasing tendency in all 3 children after prophylactic operation, the latter also showing an increasing volume of well-vascularized isthmi (from 1.5 to 2.5 ml).


IPTB reliably removes all C cells. There may not be need for total thyroidectomy (TTx) in cases with CCH. When necessary, completion TTx can be performed easily without additional risk. IPTB leaves a functionally relevant remnant, corresponding to that of a subtotal resection. This might be of importance especially for prophylactic surgery in children where the isthmus can compensate for the loss of thyroid function with time.


  1. 1.
    Pacini F, Fontanelli M, Fugazzola L, et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab 1994;78:826–829CrossRefPubMedGoogle Scholar
  2. 2.
    Rieu M, Lame MC, Richard A, et al. Prevalence of sporadic medullary thyroid carcinoma: the importance of routine measurement of serum calcitonin in the diagnosis evaluation of thyroid nodules. Clin Endocrinol 1995;42:453–460Google Scholar
  3. 3.
    Vierhapper H, Raber W, Bieglmayer C, et al. Routine measurement of plasma calcitonin in nodular thyroid diseases. J Clin Endokrinol Metab 1997;82(5):1589–1593CrossRefGoogle Scholar
  4. 4.
    Niccoli P, Wion-Barbot N, Caron P, et al. Interest of routine measurement of serum calcitonin: study in a large series of thyroidectomized patients. J Clin Endocrinol Metab 1997;82:338–341CrossRefGoogle Scholar
  5. 5.
    Kaserer K, Scheuba C, Neuhold N, et al. C-cell hyperplasia and medullary thyroid carcinoma in patients routinely screened for serum calcitonin. Am J Surg Pathol 1998;22(6):722–728CrossRefPubMedGoogle Scholar
  6. 6.
    Henry JF, et al. Latent subclinical medullary thyroid Carcinoma: Diagnosis and treatment. World J Surg 1998;22:752–757CrossRefPubMedGoogle Scholar
  7. 7.
    Özgen AG, Hamulu F, Bayraktar F, et al. Evaluation of routine basal serum calcitonin measurement for early diagnosis of medullary thyroid carcinoma in seven hundred seventy-three patients with nodular goiter. Thyroid 1999;9:579–582PubMedCrossRefGoogle Scholar
  8. 8.
    Hahm JR, Lee MS, Min YK, et al. Routine measurement of serum calcitonin is useful for early detection of medullary thyroid carcinoma in patients with nodular thyroid diseases. Thyroid 2001;11(1):73–80CrossRefPubMedGoogle Scholar
  9. 9.
    Iacobone M, Niccoli-Sire P, Sebag F, et al. Can sporadic medullary thyroid carcinoma be biochemically predicted? Prospective analysis of 66 operated patients with elevated serum calcitonin levels. World J Surg 2002;26(8):886–890CrossRefPubMedGoogle Scholar
  10. 10.
    Mirallié E, Iacobone M, Sebag F, et al. Results of surgical treatment of sporadic medullary thyroid carcinoma following routine measurement of serum calcitonin. Eur J Surg Oncol 2004;30:790–795CrossRefPubMedGoogle Scholar
  11. 11.
    Scheuba C, Kaserer K, Weinhausl A, et al. Is medullary thyroid cancer predictable? A prospective study of 86 patients with abnormal pentagastrin tests. Surgery 1999;126(6):1089–1095CrossRefPubMedGoogle Scholar
  12. 12.
    Karges W, Dralle H, Raue F, et al. Calcitonin measurement to detect medullary thyroid carcinoma in nodular goiter: German evidence-based consensus recommendation. Exp Clin Endocrinol Diabetes 2004;112:52–58CrossRefPubMedGoogle Scholar
  13. 13.
    Lips CJM, et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. New Engl J Med 1994;331(13):828–835CrossRefPubMedGoogle Scholar
  14. 14.
    Dralle H, Gimm O, Simon D, et al. Prophylactic thyroidectomy in 75 children and adolescents with hereditary medullary thyroid carcinoma: German and Austrian experience. World J Surg 1998;22:744–751CrossRefPubMedGoogle Scholar
  15. 15.
    Wahl RA, Röher HD. Surgery of C cell carcinoma of the thyroid. Prog Surg 1988;19:100–112Google Scholar
  16. 16.
    Brandi ML, Gogel RF, Angeli A, et al. Consensus: Guide lines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001;86:5658–5671CrossRefPubMedGoogle Scholar
  17. 17.
    Machens A, Niccoli-Sire P, Hoegel J, et al. For the European multiple endocrine neoplasia study group. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med 2003;349:1517–1525CrossRefPubMedGoogle Scholar
  18. 18.
    Gimm O, Ukkat J, Niederle BE, et al. Timing and extent of surgery in patients with familial medullary thyroid carcinoma/multiple endocrine neoplasia 2A-related RET mutations not affecting codon 634. World J Surg 2004;28:1312–1316CrossRefPubMedGoogle Scholar
  19. 19.
    Sadler TW, Langman J. Medizinische Embryologie Die normale menschliche Entwicklung und ihre Fehlbildungen. Thieme 2003;10:330–335Google Scholar
  20. 20.
    Wolfe HJ, Voelkel EF, Tashjian AH. Distribution of calcitonin-containing cells in the normal adult human thyroid gland: A correlation of morphology with peptide content. J Clin Endocrinol Metab 1974;38:688–694PubMedCrossRefGoogle Scholar
  21. 21.
    Wolfe HJ, DeLellis RA, Voekel EF, et al. Distribution of calcitonin-containing cells in the normal neonatal human thyroid gland: A correlation of morphology with peptide content. J Clin Endocrinol Metab 1975;41:1076–1081PubMedGoogle Scholar
  22. 22.
    Gmunder-Lehner RB, Okamoto E, Hedinger C. Distribution of C cells in the human thyroid gland. Schweiz Med Wochenschr 1983;113(39):1385–1394PubMedGoogle Scholar
  23. 23.
    Biddinger PW, Brennan MF, Rosen PP. Symptomatic C-cell hyperplasia associated with chronic lymphocytic thyroiditis. Am J Surg Pathol 1991;15(6):599–604PubMedCrossRefGoogle Scholar
  24. 24.
    Guyétant S, Rousselet MC, Durigon M, et al. Experimental studies sex-related C cell hyperplasia in the normal human thyroid: A quantitative autopsy study. J Clin Endocrinol Metab 1997;82:42–47CrossRefPubMedGoogle Scholar
  25. 25.
    Gibson WGH, Peng T-C, Croker BP. Age-associated C-cell hyperplasia in the human Thyroid. Am J Pathol 1982;106:388–393PubMedGoogle Scholar
  26. 26.
    Scopsi L, Di Palma S, Ferrari C, et al. C-Cell hyperplasia accompanying thyroid diseases other than medullary carcinoma: an immunocytochemical study by means of antibodies to calcitonin and somatostatin. Mod Pathol 1991;4,3:297–304Google Scholar
  27. 27.
    Perry A, Molberg K, Albores-Saavedra J. Physiologic versus neoplastic C-cell hyperplasia of the thyroid separation of distinct histologic and biologic entities. Am Cancer Soc 1996;77:750–756Google Scholar
  28. 28.
    Kaserer K, Scheuba C, Neuhold N, et al. Sporadic versus familiar medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol 2001;25(10):1245–1251CrossRefPubMedGoogle Scholar
  29. 29.
    Hinze R, Gimm O, Brauckhoff M, et al. “Physiologische” und „ „neoplastische” C-Zell-hyperplasien der Schilddrüse Morphologisch und biologisch distinkte Entitäten? Pathologe 2001;22:259–265CrossRefPubMedGoogle Scholar
  30. 30.
    Li Volsi VA. Editorial: C cell hyperplasia/neoplasia. J Clin Endocrinol Metab 1997;82(1):39–41CrossRefGoogle Scholar
  31. 31.
    Juaneda C, Dumont Y, Quirion R. The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol Sci 2000;21:432–438CrossRefPubMedGoogle Scholar
  32. 32.
    Pondel M. Calcitonin and calcitonin receptors: bone and beyond. J Exp Pathol 2000;81:405–422CrossRefGoogle Scholar
  33. 33.
    Mason RT, Shulkes A, Zajac JD, et al. Basal and stimulated release of calcitonin gene-related peptide (CGRP) in patients with medullary thyroid carcinoma. Clin Endocrinol 1986;25:675–685Google Scholar
  34. 34.
    Williams ED, Ponder BJ, Craig RK. Immunohistochemical study of calcitonin gene-related peptide in human medullary carcinoma and C cell hyperplasia. Clin Endocrinol 1987;27:107–114Google Scholar
  35. 35.
    Schmid KW, Kirchmair R, Ladurner D, et al. Immunohistochemical comparison of chromogranins A and B and secretogranin II with calcitonin and calcitonin gene-related peptide expression in normal, hyperplastic and neoplastic C-cells of the human thyroid. Histopathology 1992; 21:225–232PubMedGoogle Scholar
  36. 36.
    Vierhapper H, Bieglmayer C, Heinze G, et al. Frequency of RET proto-oncogene mutations in patients with normal and with moderately elevated pentagastrin-stimulated serum concentrations of calcitonin. Thyroid 2004;14(8):580–583CrossRefPubMedGoogle Scholar
  37. 37.
    Frank-Raue K. Nachsorge nach prophylaktischer Thyreoidektomie bei Kindern und Jugendlichen bei MEN 2 Syndrom. In: Sutter T, Brauckhoff M, Dralle H, editors. Aktuelle Chirurgie endokriner Erkrankungen und hereditärer Tumoren. Gutenberg Verlag LeipzigGoogle Scholar
  38. 38.
    Gemsenjäger E. Die chirurgische Behandlung der autonomen Knotenstruma. Schweiz Med Wschr 1992;122:687–692PubMedGoogle Scholar
  39. 39.
    Wahl RA, Rimpl I, Saalabian S, Schabram J. Differentiated operative therapy of thyroid autonomy (Plummer’s disease). Exp Clin Endocrinol Diabetes (Section Schilddrüse 1998) 1998;106(4):78–84CrossRefGoogle Scholar
  40. 40.
    Wiener JP. Is partial thyroidectomy definitive treatment for Plummer’s disease (autonomous goitre)? Clin Nucl Med 1983;8:78–82PubMedGoogle Scholar
  41. 41.
    Rosato L, Avenia N, Bernante P, De Palma M, Gulino G, Nasi PG, Pelizzo MR, Pezzulo L. Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in Italy over 5 years. World J Surg 2004;28(3):271–276CrossRefPubMedGoogle Scholar
  42. 42.
    Thomusch O, Machens A, Sekulla C, et al. Multivariate analysis of risk factors for postoperative complications in benign goiter surgery: prospective multicenter study in Germany. World J Surg 2000;24:1335–1341CrossRefPubMedGoogle Scholar
  43. 43.
    Schabram J, Wahl RA. Clinical relevance of slightly elevated calcitonin levels in non hereditary, non-MEN thyroid disease. Viszeralchirurgie 2001;36:1–5CrossRefGoogle Scholar
  44. 44.
    Peix JL, Braun P, Saadat M, et al. Occult micro medullary thyroid carcinoma: therapeutic strategy and follow-up. World J Surg 2000;24:1373–1376CrossRefPubMedGoogle Scholar
  45. 45.
    Raffel A, Cupisti K, Krausch M, et al. Incidentally found medullary thyroid cancer: treatment rationale for small tumors. World J Surg 2004;28:397–401CrossRefPubMedGoogle Scholar
  46. 46.
    Raue F, Frank-Raue K. Subclinical hypo- and hyperthyroidism—diagnostic and therapeutic implications. Viszeralchirurgie 2005;40:170–173CrossRefGoogle Scholar
  47. 47.
    Stelfox HT, Ahmed SB, Fiskio J, et al. An evaluation of the adequacy monitoring of thyroid replacement therapy. J Eval Clin Pract 2004;10:525–530CrossRefPubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 2006

Authors and Affiliations

  • Robert Arnulf Wahl
    • 1
  • Christian Vorländer
    • 1
  • Susanne Kriener
    • 2
  • Johanna Pedall
    • 1
  • Martin Spitza
    • 1
  • Martin-Leo Hansmann
    • 2
  1. 1.Department of SurgeryBürgerhospital Frankfurt am MainFrankfurt am MainGermany
  2. 2.Institute of PathologyUniversity of Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations