Advertisement

Environmental Management

, Volume 65, Issue 1, pp 46–61 | Cite as

Searching for Networks: Ecological Connectivity for Amphibians Under Climate Change

  • Felipe S. CamposEmail author
  • Ricardo Lourenço-de-Moraes
  • Danilo S. Ruas
  • Caio V. Mira-Mendes
  • Marc Franch
  • Gustavo A. Llorente
  • Mirco Solé
  • Pedro Cabral
Article

Abstract

Ecological connectivity depends on key elements within the landscape, which can support ecological fluxes, species richness and long-term viability of a biological community. Landscape planning requires clear aims and quantitative approaches to identify which key elements can reinforce the spatial coherence of protected areas design. We aim to explore the probability of the ecological connectivity of forest remnants and amphibian species distributions for current and future climate scenarios across the Central Corridor of the Brazilian Atlantic Forest. Integrating amphibian conservation, climate change and ecological corridors, we design a landscape ranking based on graph and circuit theories. To identify the sensitivity of connected areas to climate-dependent changes, we use the Model for Interdisciplinary Research on Climate by means of simulations for 2080–2100, representing a moderated emission scenario within an optimistic context. Our findings indicate that more than 70% of forest connectivity loss by climate change may drastically reduce amphibian dispersal in this region. We show that high amphibian turnover rates tend to be greater in the north-eastern edges of the corridor across ensembles of forecasts. Our spatial analysis reveals a general pattern of low-conductance areas in landscape surface, yet with some well-connected patches suggesting potential ecological corridors. Atlantic Forest reserves are expected to be less effective in a near future. For improved conservation outcomes, we recommend some landscape paths with low resistance values across space and time. We highlight the importance of maintaining forest remnants in the southern Bahia region by drafting a blueprint for functional biodiversity corridors.

Keywords

Anura Atlantic Forest Functional corridor Climate models Dispersal ability 

Notes

Acknowledgements

This work was supported by the CAPES Foundation, Ministry of Education of Brazil (99999.001180/2013-04; Finance Code 001). We thank J. David and M. Rodrigues for useful comments on the paper. We also thank the Centre for Computational Biology and Biotechnology Information Management (NBCGIB/UESC) and N. Sillero from CICGE for making the use of supercomputers available. RLM thanks funding from CNPq (140710/2013‐2; 152303/2016‐2; 430195/2018‐4).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

267_2019_1240_MOESM1_ESM.docx (16 kb)
Supplementary Table S1
267_2019_1240_MOESM2_ESM.docx (34 kb)
Supplementary Table S2

References

  1. Akçakaya HR, Bennett EL, Brooks TM, Grace MK, Heath A, Hedges S, Hilton‐Taylor C, Hoffmann D, Keith DA, Long B, Mallon DP, Meijaard E, Milner‐Gulland EJ, Rodrigues ASL, Rodriguez JP, Stephenson PJ, Stuart SN, Young RP (2018) Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv Biol 32:1128–1138.  https://doi.org/10.1111/cobi.13112 CrossRefGoogle Scholar
  2. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492.  https://doi.org/10.1111/j.1461-0248.2011.01610.x CrossRefGoogle Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47.  https://doi.org/10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  4. Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539.  https://doi.org/10.1890/11-1930.1 CrossRefGoogle Scholar
  5. Austin JD, Lougheed SC, Neidrauer L, Chek AA, Boag PT (2002) Cryptic lineages in a small frog: the post-glacial history of the spring peeper, Pseudacris crucifer (Anura: Hylidae). Mol Phylogenet Evol 25:316–329.  https://doi.org/10.1016/S1055-7903(02)00260-9 CrossRefGoogle Scholar
  6. Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8.  https://doi.org/10.1111/j.1365-2699.2010.02416.x CrossRefGoogle Scholar
  7. Baum KA, Haynes KJ, Dillemuth FP, Cronin JT (2004) The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85:2671–2676.  https://doi.org/10.1890/04-0500 CrossRefGoogle Scholar
  8. Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777.  https://doi.org/10.1126/science.1149374 CrossRefGoogle Scholar
  9. Bennett G, Mulongoy KJ (2006) Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, CBD Technical Series 23:100Google Scholar
  10. Bled F, Nichols JD, Altwegg R (2013) Dynamic occupancy models for analyzing species’ range dynamics across large geographic scales. Ecol Evol 3:4896–4909.  https://doi.org/10.1002/ece3.858 CrossRefGoogle Scholar
  11. Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 20:1–9.  https://doi.org/10.1111/ddi.12144 CrossRefGoogle Scholar
  12. Cabral P, Feger C, Levrel H, Chambolle M, Basque D (2016) Assessing the impact of land-cover changes on ecosystem services: a first step toward integrative planning in Bordeaux, France. Ecosyst Serv 22:318–327.  https://doi.org/10.1016/j.ecoser.2016.08.005 CrossRefGoogle Scholar
  13. Campos FS, Brito D, Solé M (2013) Threatened amphibians and their conservation status within the protected area network in Northeastern Brazil. J Herpetol 47:277–285.  https://doi.org/10.1670/11-158 CrossRefGoogle Scholar
  14. Campos FS, Trindade-Filho J, Brito D, Llorente GA, Solé M (2014) The efficiency of indicator groups for the conservation of amphibians in the Brazilian Atlantic Forest. Ecol Evol 4:2505–2514.  https://doi.org/10.1002/ece3.1073 CrossRefGoogle Scholar
  15. Campos FS, Llorente GA, Rincón L, Lourenço-de-Moraes R, Solé M (2016) Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest. Web Ecol 16:9–12.  https://doi.org/10.5194/we-16-9-2016 CrossRefGoogle Scholar
  16. Campos FS, Lourenço-de-Moraes R, Llorente GA, Solé M (2017) Cost-effective conservation of amphibian ecology and evolution. Sci Adv 3:e1602929.  https://doi.org/10.1126/sciadv.1602929 CrossRefGoogle Scholar
  17. Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121.  https://doi.org/10.1046/j.1472-4642.2003.00011.x CrossRefGoogle Scholar
  18. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789.  https://doi.org/10.1126/science.1166955 CrossRefGoogle Scholar
  19. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201.  https://doi.org/10.1111/j.1365-2699.2007.01870.x CrossRefGoogle Scholar
  20. Carroll C, Noss RF, Paquet PC, Schumaker NH (2004) Extinction debt of protected areas in developing landscapes. Conserv Biol 18:1110–1120.  https://doi.org/10.1111/j.1523-1739.2004.00083.x CrossRefGoogle Scholar
  21. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261.  https://doi.org/10.1126/science.1162547 CrossRefGoogle Scholar
  22. Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JBB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BB (2017) Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3:e1701345.  https://doi.org/10.1126/sciadv.1701345 CrossRefGoogle Scholar
  23. Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc Ecol 27:267–279.  https://doi.org/10.1007/s10980-011-9694-z CrossRefGoogle Scholar
  24. Delabie JHC, Jahyny B, Nascimento IC, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers Conserv 16:2359–2384.  https://doi.org/10.1007/s10531-007-9190-6 CrossRefGoogle Scholar
  25. Dias IR, Medeiros TT, Nova MFV, Solé M (2014) Amphibians of Serra Bonita, Southern bahia: a new hotpoint within Brazil’s atlantic forest hotspot. ZooKeys 449:105–130.  https://doi.org/10.3897/zookeys.449.7494 CrossRefGoogle Scholar
  26. Dietz MS, Belote RT, Aplet GH, Aycrigg JL (2015) The world’s largest wilderness protection network after 50years: an assessment of ecological system representation in the U.S. National Wilderness Preservation System. Biol Conserv 184:431–438.  https://doi.org/10.1016/j.biocon.2015.02.024 CrossRefGoogle Scholar
  27. Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906.  https://doi.org/10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
  28. Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147.  https://doi.org/10.1111/j.1365-2664.2010.01899.x CrossRefGoogle Scholar
  29. Duan RY, Kong XQ, Huang MY, Varela S, Ji X (2016) The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ 4:e2185.  https://doi.org/10.7717/peerj.2185 CrossRefGoogle Scholar
  30. Duflot R, Avon C, Roche P, Bergès L (2018) Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study. J Nat Conserv 46:38–47.  https://doi.org/10.1016/j.jnc.2018.08.005 CrossRefGoogle Scholar
  31. Dirmeyer PA, Niyogi D, de Noblet-Ducoudré N, Dickinson RE, Snyder PK (2010) Impacts of land use change on climate. Int J Climatol 30:1905–1907.  https://doi.org/10.1002/joc.2157 CrossRefGoogle Scholar
  32. Early R, Sax DF (2011) Analysis of climate paths reveals potential limitations on species range shifts. Ecol Lett 14:1125–1133.  https://doi.org/10.1111/j.1461-0248.2011.01681.x CrossRefGoogle Scholar
  33. Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77.  https://doi.org/10.1111/j.1600-0587.2008.05505.x CrossRefGoogle Scholar
  34. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342.  https://doi.org/10.1111/j.2041-210X.2010.00036.x CrossRefGoogle Scholar
  35. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57.  https://doi.org/10.1111/j.1472-4642.2010.00725.x CrossRefGoogle Scholar
  36. ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, RedlandsGoogle Scholar
  37. Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257.  https://doi.org/10.1016/j.biocon.2012.09.020 CrossRefGoogle Scholar
  38. Faria D, Baumgarten J (2007) Shade cacao plantations (Theobroma cacao) and bat conservation in southern Bahia, Brazil. Biodivers Conserv 16:291–312.  https://doi.org/10.1007/s10531-005-8346-5 CrossRefGoogle Scholar
  39. Faria D, Paciencia MLB, Dixo M, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 16:2335–2357.  https://doi.org/10.1007/s10531-007-9189-z CrossRefGoogle Scholar
  40. Ferreira RB, Lourenço-de-Moraes R, Teixeira RL, Beard KH (2016) Frogs associations with bromeliads in an abandoned cacao plantation in Northeastern Brazil. North West J Zool 12:392–396Google Scholar
  41. Fourcade Y (2016) Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol Inf 36:8–14.  https://doi.org/10.1016/j.ecoinf.2016.09.002 CrossRefGoogle Scholar
  42. Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330.  https://doi.org/10.1111/j.1472-4642.2010.00641.x CrossRefGoogle Scholar
  43. Frost DR (2019) Amphibian species of the world: an online reference, version 6.0. American Museum of Natural History, New York, NY. http://research.amnh.org/herpetology/amphibia/index.html
  44. Gibbs JP, Whiteleather KK, Schueler FW (2005) Changes in frog and toad populations over 30 years in New York State. Ecol Appl 15:1148–1157.  https://doi.org/10.1890/03-5408 CrossRefGoogle Scholar
  45. Grant EHC (2005) Correlates of vernal pool occurrence in the Massachusetts, USA landscape. Wetlands 25:480–487CrossRefGoogle Scholar
  46. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons J, McDonald‐Madden E, Mantyka‐Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435.  https://doi.org/10.1111/ele.12189 CrossRefGoogle Scholar
  47. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320.  https://doi.org/10.1016/j.landurbplan.2011.02.036 CrossRefGoogle Scholar
  48. Haddad CFB, Toledo LF, Prado CPA, Loebmann D, Gasparini JL, Sazima I (2013) Guia dos anfíbios da Mata Atlântica – diversidade e biologia. Anolis Books, São PauloGoogle Scholar
  49. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy T, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052.  https://doi.org/10.1126/sciadv.1500052 CrossRefGoogle Scholar
  50. Hamilton CM, Baumann M, Pidgeon AM, Helmers DP, Thogmartin WE, Heglund PJ, Radeloff VC (2016) Past and predicted future effects of housing growth on open space conservation opportunity areas and habitat connectivity around National Wildlife Refuges. Landsc Ecol 31:2175–2186.  https://doi.org/10.1007/s10980-016-0392-8 CrossRefGoogle Scholar
  51. Hannah L (2010) A global conservation system for climate-change adaptation: special section. Conserv Biol 24:70–77.  https://doi.org/10.1111/j.1523-1739.2009.01405.x CrossRefGoogle Scholar
  52. Hewitson BC, Crane RG (2006) Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. Int J Climatol 26:1315–1337.  https://doi.org/10.1002/joc.1314 CrossRefGoogle Scholar
  53. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  54. Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46:964–969.  https://doi.org/10.1111/j.1365-2664.2009.01695.x CrossRefGoogle Scholar
  55. Hopkins WA (2007) Amphibians as models for studying environmental change. ILAR J 48:270–277.  https://doi.org/10.1093/ilar.48.3.270 CrossRefGoogle Scholar
  56. IBGE (2014) Mapa de Cobertura e Uso da Terra do Brasil 2014. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. https://ww2.ibge.gov.br/home/geociencias/recursosnaturais/usodaterra/default.shtm
  57. IUCN (2018) The IUCN red list of threatened species, version 2018-2. http://www.iucnredlist.org/
  58. Janin A, Léna JP, Ray N, Delacourt C, Allemand P, Joly P (2009) Assessing landscape connectivity with calibrated cost-distance modelling: predicting common toad distribution in a context of spreading agriculture. J Appl Ecol 46:833–841.  https://doi.org/10.1111/j.1365-2664.2009.01665.x CrossRefGoogle Scholar
  59. Jenkins CN, Van Houtan KS, Pimm SL, Sexton JO (2015) US protected lands mismatch biodiversity priorities. Proc Natl Acad Sci USA 112:5081–5086.  https://doi.org/10.1073/pnas.1418034112 CrossRefGoogle Scholar
  60. Joly P, Morand C, Cohas A (2003) Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity.C R Biol 326:132–139.  https://doi.org/10.1016/S1631-0691(03)00050-7 CrossRefGoogle Scholar
  61. Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213.  https://doi.org/10.1111/j.1755-263X.2010.00097.x CrossRefGoogle Scholar
  62. Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116.  https://doi.org/10.1016/j.tree.2013.12.001 CrossRefGoogle Scholar
  63. Lawler JJ, White D (2008) Assessing the mechanisms behind successful surrogates for biodiversity in conservation planning. Anim Conserv 11:270–280.  https://doi.org/10.1111/j.1469-1795.2008.00176.x CrossRefGoogle Scholar
  64. Lee-Yaw JA, Davidson A, McRae BH, Green DM (2009) Do landscape processes predict phylogeographic patterns in the wood frog? Mol Ecol 18:1863–1874.  https://doi.org/10.1111/j.1365-294X.2009.04152.x CrossRefGoogle Scholar
  65. Le Saout S, Hoffmann M, Shi Y, Hughes A, Bernard C, Brooks TM, Bertzky B, Butchart SHM, Stuart SN, Badman T, Rodrigues ASL (2013) Protected areas and effective biodiversity conservation. Science 342:803–805.  https://doi.org/10.1126/science.1239268 CrossRefGoogle Scholar
  66. Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8:e54323.  https://doi.org/10.1371/journal.pone.0054323 CrossRefGoogle Scholar
  67. Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368.  https://doi.org/10.1007/s10531-013-0605-2 CrossRefGoogle Scholar
  68. Liang J, He X, Zeng G, Zhong M, Gao X, Li X, Li X, Wu H, Feng C, Xing W, Fang Y, Mo D (2018) Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci Total Environ 626:22–29.  https://doi.org/10.1016/j.scitotenv.2018.01.086 CrossRefGoogle Scholar
  69. Lima-Ribeiro MS, Varela S, González-Hernández J, de Oliveira G, Diniz-Filho JAF, Terribile LC (2015) EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Inf 10:1–21.  https://doi.org/10.17161/bi.v10i0.4955 CrossRefGoogle Scholar
  70. Lourenço-de-Moraes R, Malagoli LR, Guerra V, Ferreira RB, Affonso IP, Haddad CFB, Sawaya RJ, Bastos RP (2018) Nesting patterns among Neotropical species assemblages: can reserves in urban areas be failing to protect anurans? Urban Ecosyst 5:933–942.  https://doi.org/10.1007/s11252-018-0767-5 CrossRefGoogle Scholar
  71. Lourenço‐de‐Moraes R, Campos FC, Ferreira RB, Solé M, Beard KH, Bastos RP (2019) Back to the future: conserving functional and phylogenetic diversity in amphibian climate‐refuges. Biodivers Conserv 28:1049–1073.  https://doi.org/10.1007/s10531-019-01706-x CrossRefGoogle Scholar
  72. Loyola RD, Becker CG, Kubota U, Haddad CFB, Fonseca CR, Lewinsohn TM (2008) Hung out to dry: Choice of priority ecoregions for conserving threatened neotropical anurans depends on life-history traits. PLoS ONE e2120.  https://doi.org/10.1371/journal.pone.0002120 CrossRefGoogle Scholar
  73. Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LDS (2014) Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 37:65–72.  https://doi.org/10.1111/j.1600-0587.2013.00396.x CrossRefGoogle Scholar
  74. Maréchaux I, Rodrigues ASL, Charpentier A (2017) The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography 40:1166–1176.  https://doi.org/10.1111/ecog.02598 CrossRefGoogle Scholar
  75. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69.  https://doi.org/10.1111/j.1472-4642.2008.00491.x CrossRefGoogle Scholar
  76. Martensen AC, Saura S, Fortin MJ (2017) Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol Evol 8:1253–1264.  https://doi.org/10.1111/2041-210X.12799 CrossRefGoogle Scholar
  77. Massot M, Clobert J, Ferrière R (2008) Climate warming, dispersal inhibition and extinction risk. Glob Chang Biol 14:461–469.  https://doi.org/10.1111/j.1365-2486.2007.01514.x CrossRefGoogle Scholar
  78. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561.  https://doi.org/10.1554/05-321.1 CrossRefGoogle Scholar
  79. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724.  https://doi.org/10.1890/07-1861.1 CrossRefGoogle Scholar
  80. Merow C, Silander Jr JA (2014) A comparison of Maxlike and Maxent for modelling species distributions. Methods Ecol Evol 5:215–225.  https://doi.org/10.1111/2041-210X.12152 CrossRefGoogle Scholar
  81. Metzger JP (2009) Conservation issues in the Brazilian Atlantic Forest. Biol Conserv 142:1138–1140.  https://doi.org/10.1016/j.biocon.2008.10.012 CrossRefGoogle Scholar
  82. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hot-spots. In: Zachos F, Habel J (eds) Biodiversity hotspots. Springer, Berlin, pp 3–22.  https://doi.org/10.1007/978-3-642-20992-5_1 CrossRefGoogle Scholar
  83. MMA (2015) Cadastro Nacional de Unidades de Conservação. Ministério do Meio Ambiente, Brasília, Brasil. http://www.mma.gov.br/cadastro_uc/
  84. Morais AR, Siqueira MN, Lemes P, Maciel NM, de Marco P, Brito D (2013) Unraveling the conservation status of data deficient species. Biol Conserv 166:98–102.  https://doi.org/10.1016/j.biocon.2013.06.010 CrossRefGoogle Scholar
  85. Nori J, Lemes P, Urbina-Cardona N, Baldo D, Lescano J, Loyola R (2015) Amphibian conservation, land-use changes and protected areas: a global overview. Biol Conserv 191:367–374.  https://doi.org/10.1016/j.biocon.2015.07.028 CrossRefGoogle Scholar
  86. Ochoa-Ochoa L, Urbina-Cardona JN, Vázquez LB, Flores-Villela O, Bezaury-Creel J (2009) The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS ONE 4:e6878.  https://doi.org/10.1371/journal.pone.0006878 CrossRefGoogle Scholar
  87. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2013) Vegan: community ecology package. R Foundation for Statistical Computing, Vienna.  https://doi.org/10.4135/9781412971874.n145
  88. Overton JMC, Stephens RTT, Leathwick JR, Lehmann A (2002) Information pyramids for informed biodiversity conservation. Biodivers Conserv 11:2093–2116.  https://doi.org/10.1023/A:1021386426790 CrossRefGoogle Scholar
  89. Pardini R, Faria D, Accacio GM, Laps RR, Mariano-Neto E, Paciencia ML, Dixo M, Baumgarten J (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190.  https://doi.org/10.1016/j.biocon.2009.02.010 CrossRefGoogle Scholar
  90. Patrick DA, Hunter ML, Calhoun AJK (2006) Effects of experimental forestry treatments on a Maine amphibian community. For Ecol Manag 234:323–332.  https://doi.org/10.1016/j.foreco.2006.07.015 CrossRefGoogle Scholar
  91. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371.  https://doi.org/10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  92. Pearson RG, Dawson TP (2005) Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change. Biol Conserv 123:389–401.  https://doi.org/10.1016/j.biocon.2004.12.006 CrossRefGoogle Scholar
  93. Peterson T, Ortega-Huerta M, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629.  https://doi.org/10.1038/416626a CrossRefGoogle Scholar
  94. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographical distributions. Princeton University Press, New JerseyCrossRefGoogle Scholar
  95. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  96. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175.  https://doi.org/10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  97. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197.  https://doi.org/10.1890/07-2153.1 CrossRefGoogle Scholar
  98. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open‐source release of Maxent. Ecography 40:887–893.  https://doi.org/10.1111/ecog.03049 CrossRefGoogle Scholar
  99. Popescu VD, Hunter ML (2011) Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements. Ecol Appl 21:1283–1295.  https://doi.org/10.1890/10-0658.1 CrossRefGoogle Scholar
  100. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna., https://www.R-project.org/
  101. Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643.  https://doi.org/10.1111/jbi.12227 CrossRefGoogle Scholar
  102. Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz A, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Chang Biol 15:1557–1569.  https://doi.org/10.1111/j.1365-2486.2008.01766.x CrossRefGoogle Scholar
  103. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126.  https://doi.org/10.4322/natcon.2012.030 CrossRefGoogle Scholar
  104. Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob Chang Biol 14:1703–1720.  https://doi.org/10.1111/j.1365-2486.2008.01596.x CrossRefGoogle Scholar
  105. Ray N, Lehmann A, Joly P (2002) Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers Conserv 11:2143–2165.  https://doi.org/10.1023/A:1021390527698 CrossRefGoogle Scholar
  106. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153.  https://doi.org/10.1016/j.biocon.2009.02.021 CrossRefGoogle Scholar
  107. Richardson DM, Whittaker RJ (2010) Conservation biogeography—foundations, concepts and challenges. Divers Distrib 16:313–320.  https://doi.org/10.1111/j.1472-4642.2010.00660.x CrossRefGoogle Scholar
  108. Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Yan X (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643.  https://doi.org/10.1038/nature02422 CrossRefGoogle Scholar
  109. Rosenberg DK, Noon BR, Meslow EC (1997) Biological corridors: form, function, and efficacy. BioScience 47:677–687.  https://doi.org/10.2307/1313208 CrossRefGoogle Scholar
  110. Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis, version 2. Methods Ecol Evol 2:229–232.  https://doi.org/10.1111/j.2041-210X.2010.00081.x CrossRefGoogle Scholar
  111. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103.  https://doi.org/10.1016/j.landurbplan.2007.03.005 CrossRefGoogle Scholar
  112. Saura S, Torné J (2009) Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139.  https://doi.org/10.1016/j.envsoft.2008.05.005 CrossRefGoogle Scholar
  113. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537.  https://doi.org/10.1111/j.1600-0587.2009.05760.x CrossRefGoogle Scholar
  114. Semlitsch RD, Conner CA, Hocking DJ, Rittenhouse TAG, Harper EB (2008) Effects of timber harvesting on pond-breeding amphibian persistence: testing the evacuation hypothesis. Ecol Appl 18:283–289.  https://doi.org/10.1890/07-0853.1 CrossRefGoogle Scholar
  115. Silvano DL, Segalla MV (2005) Conservation of Brazilian amphibians. Conserv Biol 19:653–658.  https://doi.org/10.1111/j.1523-1739.2005.00681.x CrossRefGoogle Scholar
  116. Smith MA, Green DM (2005) Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations? Ecography 28:110–128.  https://doi.org/10.1111/j.0906-7590.2005.04042.x CrossRefGoogle Scholar
  117. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123.  https://doi.org/10.1111/j.1461-0248.2007.01107.x CrossRefGoogle Scholar
  118. SOS Mata Atlântica, INPE (2015) Atlas dos Remanescentes Florestais da Mata Atlântica Período 2013–2014. https://www.sosma.org.br/projeto/atlas-da-mata-atlantica/dados-mais-recentes/
  119. Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564.  https://doi.org/10.1111/j.1365-294X.2005.02573.x CrossRefGoogle Scholar
  120. Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591.  https://doi.org/10.1111/j.1365-294X.2010.04657.x CrossRefGoogle Scholar
  121. Sperber CF, Nakayama K, Valverde MJ, Neves FS (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251.  https://doi.org/10.1016/j.baae.2004.04.001 CrossRefGoogle Scholar
  122. Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, PrincetonGoogle Scholar
  123. Stevenson-Holt CD, Watts K, Bellamy CC, Nevin OT, Ramsey AD (2014) Defining landscape resistance values in least-cost connectivity models for the invasive grey squirrel: a comparison of approaches using expert-opinion and habitat suitability modelling. PloS ONE 9:e112119.  https://doi.org/10.1371/journal.pone.0112119 CrossRefGoogle Scholar
  124. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786.  https://doi.org/10.1126/science.1103538 CrossRefGoogle Scholar
  125. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293.  https://doi.org/10.1126/science.3287615 CrossRefGoogle Scholar
  126. Tabarelli M, Silva JMC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425.  https://doi.org/10.1023/B:BIOC.0000019398.36045.1b CrossRefGoogle Scholar
  127. Tabarelli M, Pinto LP, Silva JMC, Hirota M, Bede L (2005) Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conserv Biol 19:695–700.  https://doi.org/10.1111/j.1523-1739.2005.00694.x CrossRefGoogle Scholar
  128. Tabor K, Williams JW (2010) Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol Appl 20:554–565.  https://doi.org/10.1890/09-0173.1 CrossRefGoogle Scholar
  129. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  130. Tehrany MS, Kumar L, Drielsma MJ (2017) Review of native vegetation condition assessment concepts, methods and future trends. J Nat Conserv 40:12–23.  https://doi.org/10.1016/j.jnc.2017.08.004 CrossRefGoogle Scholar
  131. Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: Implications for conservation. For Ecol Manag 257:1219–1230.  https://doi.org/10.1016/j.foreco.2008.10.011 CrossRefGoogle Scholar
  132. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109:77.  https://doi.org/10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  133. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250.  https://doi.org/10.1073/pnas.0409902102 CrossRefGoogle Scholar
  134. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19.  https://doi.org/10.1034/j.1600-0706.2000.900102.x CrossRefGoogle Scholar
  135. Triviño M, Kujala H, Araújo MB, Cabeza M (2018) Planning for the future: identifying conservation priority areas for Iberian birds under climate change. Landsc Ecol 33:659–673.  https://doi.org/10.1007/s10980-018-0626-z CrossRefGoogle Scholar
  136. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan‐Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685.  https://doi.org/10.1111/j.1469-185X.2011.00216.x CrossRefGoogle Scholar
  137. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218.  https://doi.org/10.1890/0012-9658(2001)082[1205:lcagtp]2.0.co;2 CrossRefGoogle Scholar
  138. Urbina-Cardona JN (2008) Conservation of Neotropical Herpetofauna: research trends and challenges. Trop Conserv Sci 11:359–375.  https://doi.org/10.1177/194008290800100405 CrossRefGoogle Scholar
  139. Verdade VK, Valdujo PH, Carnaval AC, Schiesari L, Toledo LF, Mott T, Andrade GV, Eterovick PC, Menin M, Pimenta BVS, Nogueira C, Lisboa CS, de Paula CD, Silvano (2012) A leap further: the Brazilian amphibian conservation action plan. Alytes 29:28–43Google Scholar
  140. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Dist 14:763–773.  https://doi.org/10.1111/j.1472-4642.2008.00482.x CrossRefGoogle Scholar
  141. Worboys GL, Francis WL, Lockwood M (2010) Connectivity conservation management: a global guide. Earthscan, LondonCrossRefGoogle Scholar
  142. Young BE, Stuart SN, Chanson JS, Cox NA, Boucher TM (2004) Disappearing jewels: the status of New World amphibians. NatureServe, VirginiaGoogle Scholar
  143. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797.  https://doi.org/10.1007/s10980-012-9737-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.NOVA Information Management School (NOVA IMS)Universidade Nova de LisboaLisboaPortugal
  3. 3.Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA)Universidade Federal da ParaíbaRio TintoBrazil
  4. 4.Programa de Pós-Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Estadual de Santa CruzIlhéusBrazil
  5. 5.CICGE – Centro de Investigação em Ciências Geo-Espaciais, Observatório Astronómico Prof. Manuel de BarrosUniversidade do PortoVila Nova de GaiaPortugal
  6. 6.Departamento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil

Personalised recommendations