Advertisement

Environmental Management

, Volume 62, Issue 6, pp 1089–1107 | Cite as

The Influence of Human Demography on Land Cover Change in the Great Lakes States, USA

  • Mark J. DuceyEmail author
  • Kenneth M. Johnson
  • Ethan P. Belair
  • Barbara D. Cook
Article
  • 155 Downloads

Abstract

The Great Lakes region contains productive agricultural and forest lands, but it is also highly urbanized, with 32 of its 52 million residents living in nine large metropolitan areas. Urbanization of undeveloped areas may adversely affect the productivity of agricultural and forest lands, and the provision of ecosystem services. We combine demographic and remote sensing data to evaluate land cover change in the region using a two-phase statistical modeling approach that predicts the incidence and extent of land cover change for each of the region’s 10,579 county subdivisions. Observed patterns are spatially uneven, and the probability of land cover change is influenced by current land use, human habitation, industry, and demographic change. Pseudo R2 values varied from 0.053 to 0.338 for the first-phase logistic models predicting the presence of land cover change; second-stage beta models predicting the rate of change were more reliable, with pseudo R2 ranging from 0.225 to 0.675. Overall, changes from agriculture or greenspace to development were much more predictable than changes from agriculture to greenspace or vice versa, and demographic variables were much more important in models predicting change to development. Although models successfully predicted the general location of land cover change, and models from before the Great Recession were useful for predicting the location but not the amount of change during the recession, fine-grained prediction remained challenging. Understanding where future changes are most probable can inform planning and policy-making, which may reduce the impact of development on resource production, environmental health, and ecosystem services.

Keywords

Demography Development Ecosystem services Land cover Land-use change 

Notes

Acknowledgements

This project was supported by Research Joint Venture 14-JV-11242309080, “Demographic Transformation in the Forested Regions of Nonmetropolitan America: Implications for Carbon Sequestration, Forest Harvesting and Ecosystem Services,” between the U.S.D.A. Forest Service, Northern Research Station, and the University of New Hampshire.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

267_2018_1102_MOESM1_ESM.docx (44 kb)
Supplementary tables

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723.  https://doi.org/10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 96(5):644–647.  https://doi.org/10.1111/j.1651-2227.2006.00178.x CrossRefGoogle Scholar
  3. Anderson JR (1976) A land use and land cover classification system for use with remote sensor data, vol. 964. US Govt Printing Office, Washington, DCGoogle Scholar
  4. Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23(2):112–131.  https://doi.org/10.1111/j.1538-4632.1991.tb00228.x CrossRefGoogle Scholar
  5. Bagstad K, Villa F, Batker D, Harrison-Cox J, Voigt B, Johnson G (2014) From theoretical to actual ecosystem services: mapping beneficiaries and spatial flows in ecosystem service assessments. Ecol Soc 19:64–78.  https://doi.org/10.5751/ES-06523-190264 CrossRefGoogle Scholar
  6. Brander LM, Koetse MJ (2011) The value of urban open space: meta-analyses of contingent valuation and hedonic pricing results. J Environ Manag 92:2763–2773.  https://doi.org/10.1016/j.jenvman.2011.06.019 CrossRefGoogle Scholar
  7. Brown DG (2003) Land use and forest cover on private parcels in the Upper Midwest USA, 1970 to 1990. Landsc Ecol 18(8):777–790.  https://doi.org/10.1023/B:LAND.0000014470.16973.cb CrossRefGoogle Scholar
  8. Brown DG, Johnson KM, Loveland TR, Theobald DM (2005) Rural land‐use trends in the conterminous United States, 1950–2000. Ecol Appl 15(6):1851–1863.  https://doi.org/10.1890/03-5220 CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Buttel FH. Humphrey CR (2002) Sociological theory and the natural environment. In: Dunlap RF, Michelson W (eds) Handbook of environmental sociology. Greenwood Press, Westport, CT, pp 33–69Google Scholar
  11. Butler BJ (2008) Family Forest Owners of the United States. General Technical Report NRS-27. U.S. Department of Agriculture, Newtown Square, PAGoogle Scholar
  12. Chan KM, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conservation planning for ecosystem services. PLoS Biol 4(11):2138–2152.  https://doi.org/10.1371/journal.pbio.0040379 CrossRefGoogle Scholar
  13. Clement MT, Podowski E (2013) Intensifying the countryside: a sociological study of cropland lost to the built environment in the United States, 2001–2006. Social Forces 92(2):815–838.  https://doi.org/10.1093/sf/sot097 CrossRefGoogle Scholar
  14. Clement MT, York R (2017) The asymmetric environmental consequences of population change: an exploratory county-level study of land development in the USA, 2001–2011. Popul Environ 39:47–68.  https://doi.org/10.1007/s11111-017-0274-2 CrossRefGoogle Scholar
  15. Clement MT, Chi G, Ho HC (2015a) Urbanization and land‐use change: A human ecology of deforestation across the United States, 2001–2006. Sociol Inq 85(4):628–653.  https://doi.org/10.1111/soin.12097 CrossRefGoogle Scholar
  16. Clement MT, Ergas C, Greiner PT (2015b) The environmental consequences of rural and urban population change: an exploratory spatial panel study of forest cover in the Southern United States, 2001–2006. Rural Sociol 80(1):108–136.  https://doi.org/10.1111/ruso.12056 CrossRefGoogle Scholar
  17. Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG (1998) The value of the world's ecosystem services and natural capital. Ecol Econ 25:3–16. 10.1016/S0921-8009(98)00020-2CrossRefGoogle Scholar
  18. Costello CA, Yamasaki M, Pekins PJ, Leak WB, Neefus CD (2000) Songbird response to group selection harvests and clearcuts in a New Hampshire northern hardwood forest. Ecol Manag 127(1):41–54. 10.1016/S0378-1127(99)00131-0CrossRefGoogle Scholar
  19. Coulston JW, Reams GA, Wear DN, Brewer CK (2013) An analysis of forest land use, forest land cover and change at policy-relevant scales. Forestry 87(2):267–276.  https://doi.org/10.1093/forestry/cpt056 CrossRefGoogle Scholar
  20. Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Soft 34(2):1–24. http://www.jstatsoft.org/v34/i02/CrossRefGoogle Scholar
  21. Dietz T, Jorgenson A (eds) (2013) Structural human ecology: new essays in risk, energy, and sustainability. Washington State University Press, Pullman, WA. 227 pGoogle Scholar
  22. Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12(1):53–64.  https://doi.org/10.1046/j.1466-822X.2003.00322.x CrossRefGoogle Scholar
  23. Ducey MJ, Johnson KM, Belair EP, Mockrin MH (2016) Forests in flux: the effects of demographic change on forest cover in New England and New York. Carsey School of Public Policy. University of New Hampshire, National Issue Brief, Durham, NH, p 99Google Scholar
  24. Ducey MJ, Woodall CW, Bravo-Oviedo A (2017) Climate and species functional traits influence maximum stocking in the Lake States, U.S.A. Ecol Manag 386:51–61.  https://doi.org/10.1016/j.foreco.2016.12.007 CrossRefGoogle Scholar
  25. Economic Research Service (ERS) (2004) Measuring rurality: 2004 county typology codes. https://www.ers.usda.gov/data-products/county-typology-codes.aspx. Last accessed 24 Sep 2018
  26. Environmental Systems Research Institute (ESRI) (2016). U.S. Major Highways. https://www.arcgis.com/home/item.html?id=fc870766a3994111bce4a083413988e4. Accessed 12 Jan 2016
  27. Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815.  https://doi.org/10.1080/0266476042000214501 CrossRefGoogle Scholar
  28. Forman RTT, Alexander LE (1998) Roads and their major ecological effect. Ann Rev Ecol Syst 29:207–231.  https://doi.org/10.1146/annurev.ecolsys.29.1.207 CrossRefGoogle Scholar
  29. Foster D, Aber J, Cogbill C, Hart C, Colburn E, D'Amato A, Donahue B, Driscoll C, Ellison A, Fahey T, Hall B (2010) Wildlands and woodlands: a vision for the New England landscape. Harvard Forest, Harvard University, Petersham, MAGoogle Scholar
  30. Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Yang L, Barnes C, Herold N, Wickham JD (2011) Completion of the 2006 national land cover database for the conterminous United States. Photo Eng Rem Sens 77(9):858–864Google Scholar
  31. Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: applications to Poisson models. Econometrica 52:701–720CrossRefGoogle Scholar
  32. Hammer RB, Stewart SI, Radeloff VC (2009) Demographic trends, the wildland-urban interface, and wildfire management. Soc Nat Res 22:777–782.  https://doi.org/10.1080/08941920802714042 CrossRefGoogle Scholar
  33. Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photo Eng Rem Sens 81(5):345–354Google Scholar
  34. Johnson KM, Curtis K, Egan-Robertson D (2017) Frozen in place: net migration in sub-national areas of the United States in the era of the great recession. Pop Dev Rev 43(4):599–623.  https://doi.org/10.1111/padr.12095 CrossRefGoogle Scholar
  35. Johnson KM, Nucci A, Long L (2005) Population trends in metropolitan and nonmetropolitan America: selective deconcentration and the rural rebound. The rural rebound and its aftermath. Pop Res Policy Rev 24:527–542.  https://doi.org/10.1007/s11113-005-4479-1 CrossRefGoogle Scholar
  36. Johnson KM, Beale CL (1994) The recent revival of widespread population growth in nonmetropolitan areas of the United States. Rural Sociol 59(4):655–667.  https://doi.org/10.1111/j.1549-0831.1994.tb00553.x CrossRefGoogle Scholar
  37. Johnson KM, Beale CL (2002) Nonmetro recreation counties: their identification and rapid growth. Rural Am 17(4):12–19Google Scholar
  38. Kaufeld KA, Heaton MJ, Sain SR (2014) A spatio-temporal model for mountain pine beetle damage. J Ag Biol Environ Stat 19(4):437–450.  https://doi.org/10.1007/s13253-014-0182-1 CrossRefGoogle Scholar
  39. Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O'Neill A, Kovacs K, Dalzell B (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc Natl Acad Sci 109:18619–18624.  https://doi.org/10.1073/pnas.1215991109 CrossRefGoogle Scholar
  40. Lepczyk CA, Mertig AG, Liu J (2004) Assessing landowner activities related to birds across rural-to-urban landscapes. Environ Manag 33(1):110–125.  https://doi.org/10.1007/s00267-003-0036-z CrossRefGoogle Scholar
  41. Li X, Zhou W, Ouyang Z (2013) Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc Urban Plan 114:1–8.  https://doi.org/10.1016/j.landurbplan.2013.02.005 CrossRefGoogle Scholar
  42. Lindström J, Szpiro A, Sampson PD, Bergen S, Sheppard L (2013) SpatioTemporal: an R package for spatio-temporal modelling of air-pollution. J Stat Softw. http://cran.rproject.org/web/packages/SpatioTemporal/index.html. Accessed 12 Jan 2017
  43. Lindström J, Szpiro A, Sampson PD, Oron AP, Richards M, Larson TV, Sheppard L (2014) A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates. Environ Ecol Stat 21:411–433.  https://doi.org/10.1007/s10651-013-0261-4 CrossRefGoogle Scholar
  44. Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215.  https://doi.org/10.1038/nature07276 CrossRefGoogle Scholar
  45. McFadden DL (1973) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in econometrics. Academic Press, New York, p 105–142Google Scholar
  46. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  47. Minnesota Population Center [MPC] (2016) National historical geographic information system: version 11.0 [Database]. University of Minnesota, MinneapolisGoogle Scholar
  48. Mockrin MH, Stewart SI, Radeloff VC, Hammer RB, Johnson KM (2013) Spatial and temporal residential density patterns from 1940 to 2000 in and around the Northern Forest of New England. Pop Environ 34(3):400–419.  https://doi.org/10.1007/s11111-012-0165-5 CrossRefGoogle Scholar
  49. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1):17–23.  https://doi.org/10.1093/biomet/37.1-2.17 CrossRefGoogle Scholar
  50. Moser WK, Leatherberry EC, Hansen MH, Butler BJ (2009) Farmers' objectives toward their woodlands in the upper Midwest of the United States: implications for woodland volumes and diversity. Agrofor Syst 75(1):49–60.  https://doi.org/10.1007/s10457-008-9124-7 CrossRefGoogle Scholar
  51. Niu X, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. Ecol Manag 223:415–427.  https://doi.org/10.1016/j.foreco.2005.12.044 CrossRefGoogle Scholar
  52. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Poll 193:119–129.  https://doi.org/10.1016/j.envpol.2014.05.028 CrossRefGoogle Scholar
  53. Omernik JM (1987) Ecoregions of the conterminous United States (map supplement). Ann Assoc Am Geogr 77(1):118–125.  https://doi.org/10.1111/j.1467-8306.1987.tb00149.x CrossRefGoogle Scholar
  54. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York, p 528CrossRefGoogle Scholar
  55. Polasky S, Nelson E, Pennington D, Johnson KA (2011) The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the State of Minnesota. Environ Res Econ 48:219–242.  https://doi.org/10.1007/s10640-010-9407-0 CrossRefGoogle Scholar
  56. Porter J, Costanza R, Sandhu H, Sigsgaard L, Wratten S (2009) The value of producing food, energy, and ecosystem services within an agro-ecosystem. AMBIO 38(4):186–193.  https://doi.org/10.1579/0044-7447-38.4.186 CrossRefGoogle Scholar
  57. Radeloff VC, Hagen AE, Voss PR, Field DR, Mladenoff DJ (2000) Exploring the spatial relationship between census and land-cover data. Soc Nat Res 13:599–609.  https://doi.org/10.1080/08941920050114646 CrossRefGoogle Scholar
  58. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005a) The wildland-urban interface in the United States. Ecol Appl 15(3):799–805.  https://doi.org/10.1890/04-1413 CrossRefGoogle Scholar
  59. Radeloff VC, Hammer RB, Stewart SI (2005b) Rural and suburban sprawl in the U.S. Midwest from 1940 to 2000 and its relation to forest fragmentation. Cons Biol 19(3):793–805.  https://doi.org/10.1111/j.1523-1739.2005.00387.x CrossRefGoogle Scholar
  60. Rudel TK (2009) How do people transform landscapes? A sociological perspective on suburban sprawl and tropical deforestation. Am J Sociol 115(1):129–154.  https://doi.org/10.1086/597794 CrossRefGoogle Scholar
  61. Russell R, Guerry AD, Balvanera P, Gould RK, Basurto X, Chan KM, Klain S, Levine J, Tam J (2013) Humans and nature: how knowing and experiencing nature affect well-being. Ann Rev. Environ Res 38:473–502.  https://doi.org/10.1146/annurev-environ-012312-110838 CrossRefGoogle Scholar
  62. Santos Silva JMC, Tenreyro S (2006) The log of gravity. Rev Econ Stat 88(4):641–658CrossRefGoogle Scholar
  63. Schnaiberg J, Riera J, Turner MG, Voss PR (2002) Explaining human settlement patterns in a recreational lake district: Vilas County, Wisconsin, USA. Environ Manag 30:20–34.  https://doi.org/10.1007/s00267-002-2450-z CrossRefGoogle Scholar
  64. Shifley SR, Moser WK eds. (2016) Future Forests of the Northern United States. General Technical Report NRS-151. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, PA, p 388.  https://doi.org/10.2737/NRS-GTR-151 CrossRefGoogle Scholar
  65. Shifley SR, Moser WK, Nowak DJ, Miles PD, Butler BJ, Aguilar FX, DeSantis RD, Greenfield EJ (2014) Five anthropogenic factors that will radically alter forest conditions and management needs in the Northern United States. Sci 60(5):914–925.  https://doi.org/10.5849/forsci.13-153 CrossRefGoogle Scholar
  66. Staples C, Ahmed S, Ewers RM (2012) Sensitivity of GIS patterns to data resolution: a case study of forest fragmentation in New Zealand. NZ J Ecol 36(2):203–209Google Scholar
  67. Stephens PA, Buskirk SW, Hayward GD, Martinez Del Rio C (2005) Information theory and hypothesis testing: a call for pluralism. J Appl Ecol 42(1):4–12.  https://doi.org/10.1111/j.1365-2664.2005.01002.x CrossRefGoogle Scholar
  68. Stoltz J, Lundell Y, Skärbäck E, van den Bosch MA, Grahn P, Nordström EM, Dolling A (2016) Planning for restorative forests: describing stress-reducing qualities of forest stands using available forest stand data. Eur J Res 135:803–813.  https://doi.org/10.1007/s10342-016-0974-7 CrossRefGoogle Scholar
  69. Sun H, Qie G, Wang G, Tan Y, Li J, Peng Y, Ma Z, Luo C (2015) Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Rem Sens 7(11):15114–15139.  https://doi.org/10.3390/rs71115114 CrossRefGoogle Scholar
  70. Tjur T (2009) Coefficients of determination in logistic regression models—a new proposal: the coefficient of discrimination. Am Stat 63(4):366–372.  https://doi.org/10.1198/tast.2009.08210 CrossRefGoogle Scholar
  71. Torbick N, Ziniti B, Wu S, Linder E (2016) Spatiotemporal lake skin summer temperature trends in the northeast United States. Earth Interact 20(25):1–21.  https://doi.org/10.1175/EI-D-16-0015.1 CrossRefGoogle Scholar
  72. US Census Bureau (2000) 2000 Decennial census. factfinder.census.gov/
  73. US Census Bureau (2010) 2010 Decennial census. factfinder.census.gov/
  74. Wickham JD, Stehman SV, Fry JA, Smith JH, Homer CG (2010) Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Rem Sens Environ 114(6):1286–1296.  https://doi.org/10.1016/j.rse.2010.01.018 CrossRefGoogle Scholar
  75. Wickham JD, Stehman SV, Gass L, Dewitz J, Fry JA, Wade TG (2013) Accuracy assessment of NLCD 2006 land cover and impervious surface. Rem Sens Environ 130:294–304.  https://doi.org/10.1016/j.rse.2012.12.001 CrossRefGoogle Scholar
  76. Wieczorek J, Hawala S (2011) A Bayesian zero-one inflated beta model for estimating poverty in U.S. counties. Proceedings of American Statistical Association, Section on Survey Research Methods. American Statistical Association, Alexandria, VAGoogle Scholar
  77. Wieczorek J, Nugent C, Hawala S (2012) A Bayesian zero-one inflated beta model for small-area shrinkage estimation. Proceedings of American Statistical Association, Section on Survey Research Methods. American Statistical Association, Alexandria, VAGoogle Scholar
  78. Woodall CW, Walters BF, Russell MB, Coulston JW, Domke GM, D'Amato AW, Sowers PA (2016) A tale of two forest carbon assessments in the eastern United States: forest use versus cover as a metric of change. Ecosystems 19:1401–1417.  https://doi.org/10.1007/s10021-016-0012-0 CrossRefGoogle Scholar
  79. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Rem Sens Environ 98(2):317–328.  https://doi.org/10.1016/j.rse.2005.08.006 CrossRefGoogle Scholar
  80. Zheng DL, Heath LS, Ducey MJ (2008) Modeling grain-size dependent bias in estimating forest area: a regional application. Landsc Ecol 23(9):1119–1132.  https://doi.org/10.1007/s10980-008-9272-1 CrossRefGoogle Scholar
  81. Zheng DL, Heath LS, Ducey MJ, Smith JE (2009) Quantifying scaling effects on satellite derived forest area estimates for the conterminous U.S. Int J Rem Sens 30(12):3097–3114.  https://doi.org/10.1080/01431160802558741 CrossRefGoogle Scholar
  82. Zheng DL, Heath LS, Ducey MJ, Butler B (2010) Relationships between major ownerships, forest aboveground biomass distributions, and landscape dynamics in the New England region of USA. Environ Manag 45(2):377–386.  https://doi.org/10.1007/s00267-009-9408-3 CrossRefGoogle Scholar
  83. Zheng DL, Heath LS, Ducey MJ, Smith JE (2011) Carbon dynamics in conterminous U.S. forests associated with growth and major disturbances: 1992-2001. Environ Res Lett 6:014012.  https://doi.org/10.1088/1748-9326/6/1/014012 CrossRefGoogle Scholar
  84. Zheng DL, Heath LS, Ducey MJ (2012) Potential overestimation of forest carbon sequestration in the forested wildland-urban interface associated with housing development in northern New England, USA. J For 110:105–111.  https://doi.org/10.5849/jof.10-094 CrossRefGoogle Scholar
  85. Zheng DL, Ducey MJ, Heath LS (2013) Assessing net carbon sequestration on urban and community forests of northern New England, USA. Urb For Urb Green 12:61–68.  https://doi.org/10.1016/j.ufug.2012.10.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  2. 2.Carsey School of Public PolicyUniversity of New HampshireDurhamUSA
  3. 3.Department of SociologyUniversity of New HampshireDurhamUSA

Personalised recommendations