Environmental Management

, Volume 61, Issue 2, pp 321–336 | Cite as

Satellite Images Combined with Field Data Reveal Negative Changes in the Distribution of Babassu Palms after Clearing off Amazonian Forests

  • D. MitjaEmail author
  • E. Delaître
  • A. M. Santos
  • I. Miranda
  • R. F. R. Coelho
  • D. J. Macedo
  • L. Demagistri
  • M. Petit


When the Amazonian rain forest is cut to create pasture, some of the original vegetal species survive clearing, even expressing their ability to invade agro-systems. It is true of the babassu palm, which can be considered, paradoxically, a natural resource by the “Interstate Movement of Babassu Fruit Breaker Women” or as native weed by land owners-farmers. To manage potential conflict of land uses, we study here the current density of this palm tree in different habitats, based on a combination of field data and remote sensing data. Firstly, we checked that the field survey methodology (i.e., counting free-trunk palm trees over 20 cm in circumference) provides density values compatible with those stemming from satellite images interpretation. We can see then that, a PA-Benfica Brazilian territory revealed an average density of the babassu lower in pastures (2.86 ind/ha) than in the dense forest (4.72 ind/ha) from which they originate and than in fallow land (4.31 ind/ha). We analyze in detail density data repartition in three habitats and we discuss results from the literature on the density of this palm tree versus its resilience at different developmental stages after forest clearing, depending on anthropogenic—or not—factors, including solar radiation, fire, weeding, clear cutting, burying fruit, and competition with forage grass. All these results can be exploited for the design of future management plans for the babassu palm and we think that the linked methodology and interdisciplinary approach can be extended to others palms and trees species in similar problematic issues.


Resilience VHSR satellite images Family farming Field data Photo-interpretation LCC-large circular crown palm tree 



This project has benefited from the support of the fondation Agropolis Open Science program (project: Gestion durable du Babaçu, 2014–2017, support agreement 1202-072), of the CNES TOSCA program (project: CIC-TOOB 2013-2014, research convention 130318), of the IRD – PPR Amazon program (project: ECOTEL 2013), of the CNPQ/UFRJ/IRD project: Relais (2012–2015), of the IRD (Institut de Recherche pour le Developpement), of the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), from the UFRA (Universidade Federal Rural da Amazônia). The authors thank the students who participated in the data collection between 2001 and 2008 and in particular Márcia Nazaré Rodrigues Barros and Marcos Antônio Leite da Silva. We thank Dr. Morgan Mangeas (IRD, UMR ESPACE-DEV) for statistical help. The authors thank the farmers of the PA-Benfica community for their help, availability and conviviality during the accomplishment of this work, and Mr. Deurival da Costa Carvalho for his efficiency and enthusiasm during on-site work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. Anderson AB, May PM (1985) A palmeira de muitas vidas. Cienc Hoje 4:58–64Google Scholar
  2. Anderson AB, May PH, Balick M (1991) The subsidy from. The subsidy from nature: palm forests, peasantry, and development on an Amazon frontier. Columbia University Press, New YorkGoogle Scholar
  3. Anderson A (1983) The biology of Orbignya matiana (Palmae): a tropical dry forest dominant in Brazil. Dissertation, University of FloridaGoogle Scholar
  4. Aouragh M, Lacaze B, Hotyat M, Ragala R, Aboudi AE (2013) Cartographie et suivi de la densité des arbres de l’arganeraie (sud-ouest du Maroc) à partir d’images de télédétection à haure résolution spatiale. Rev Fr De Photo Et De Télédétection 203:3–9Google Scholar
  5. Araújo RF, Lopes MA (2012) Diversity of use and local knowledge of palms (Arecaceae) in eastern Amazonia. Biodivers Conserv 21:487–501CrossRefGoogle Scholar
  6. Ardila JP, Bijker W, Tolpekin A, Stein A (2012a) Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images. Int J Appl Earth Obs 15:57–69CrossRefGoogle Scholar
  7. Ardila JP, Bijker W, Tolpekin V, Stein A (2012b) Multitemporal change detection of urban trees using localized region-based active contours in VHR images. Remote Sens Environ 124:413–426CrossRefGoogle Scholar
  8. Barot S, Mitja D, Miranda I, Meija G, Grimaldi M (2005) Reproductive plasticity in an Amazonian palm. Evol Ecol Res 7:1051–1065Google Scholar
  9. Barros MNR, 2007. Mudanças florísticas e estruturais durante o processo de degradação das florestas ripárias no sudeste do Estado de Pará, Brasil. Master’s thesis, Universidade Federal Rural da AmazôniaGoogle Scholar
  10. Chemura A, Van Duren I, Van Leeuwen LM (2015) Determination of the age of oil palm from crown projection area detected from WorldView-2 multispectral remote sensing data: the case of Ejisu-Juaben district, Ghana. ISPRS J Photogramm Remote Sens 100:118–127CrossRefGoogle Scholar
  11. de Coelho RFR (2008) Padrões e processos agroecológicos no assentamento Benfica, Município de Itupiranga, Pará. Dissertation, Universidade Federal Rural da AmazôniaGoogle Scholar
  12. Corrêa Martins R (2000) A família Arecaceae no Distrito Federal (Brasil). Master’s thesis, Universidade de BrasíliaGoogle Scholar
  13. Culvenor D (2002) TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Comput Geosci 28:33–44CrossRefGoogle Scholar
  14. Da Silva A (2008) Efeitos alelopáticos causados pelo capim brachiarão (Brachiaria brizantha) no desenvolvimento inicial da palmeira de babaçu (Orbignya Spp.). Rev Verde 3:1–7Google Scholar
  15. Faminow M (1997) Spatial economics of local demand for cattle products in Amazon development. Agric Ecosyst Environ 62:1–11CrossRefGoogle Scholar
  16. Fearnside P (2001) Land-tenure issues as factors in environmental destruction in Brasilian Amazonia: the case of southern Pará. World Dev 29:1361–1372CrossRefGoogle Scholar
  17. Flora do Brasil 2020 em construção (2016) Arecaceae. Jardim Botânico do Rio de Janeiro. Accessed 14 Nov 2016
  18. Fujisaka S, Escobar E, Veneklaas E (2000) Weedy fields and forests: interactions between land use and the composition of plants communities in the Peruvian Amazon. Agric Ecosyst Environ 78:175–186CrossRefGoogle Scholar
  19. Fujisaka S, Escobar G, Veneklaas E (1998) Plant community diversity relative to human land uses in an Amazon forest colony. Biodivers Conserv 7:41–57CrossRefGoogle Scholar
  20. Henderson A (1995) The palms of the Amazon. Oxford University Press, OxfordGoogle Scholar
  21. Henderson A, Galeano G, Bernal R (1995) Field guide to the palms of the Americas. Princeton University Press, PrincetonGoogle Scholar
  22. ISSS-Working-Group (1998) Introduction. In: Deckers JA, Nachtergaele FO, Spaargaren OC (eds) World reference base for soil resources: chapter 1. ISSS/ISRIC/FAO, Ed ACCO, LeuvenGoogle Scholar
  23. Jing L, Hu B, Noland T, Li J (2012) An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPR J Photo Remote Sens 70:88–98CrossRefGoogle Scholar
  24. Kahn F, De Granville J-J (1992) Palms in forest ecosystems of Amazonia. Springer, ParisCrossRefGoogle Scholar
  25. Kahn F, Millán B (1992) Astrocaryum (Palmae) in Amazonia. a preliminary treatment. Bulletin del’Institut Francais d'etudes Andines 21:459–531Google Scholar
  26. Ke Y, Quackenbush L (2011) A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32:4725–4747CrossRefGoogle Scholar
  27. Koch B, Svoboda J, Adler P, Dees M (2002) Automatic tree species detection based on digitised CIR aerial photos. Allg Forst Jagdztg 173:131–140Google Scholar
  28. Leadley P, Pereira HA, Fernandez-Manjares J, Proenca V, Scharlemann J, Walpole M (2010) Biodiversity scenarios: projections of the 21 st centyry change in biodiversity and associated ecosystem services. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  29. Lorenzi H, Noblick L, Kahn F, Ferreira E (2010) Flora Brasileira Lorenzi, Arecaceae (Palmeiras). Instituto Plantarum, Nova OdessaGoogle Scholar
  30. Macedo D (2015) Palmier babaçu et sociétés en Amazonie: Enquêtes et cartographie par télédétection (Etat du Pará, Brésil). Université de Montpellier 2 et 3Google Scholar
  31. Mathieu J, Rossi J-P, Grimaldi M, Mora P, Lavelle P, Rouland C (2004) A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biol Fertil Soils 40:300–305CrossRefGoogle Scholar
  32. May P, Anderson A, Balick M, Frazão J (1985) Subsistence benefits from the babassu palm (Orbignya martiana). Econ Bot 39:113–129CrossRefGoogle Scholar
  33. Mitja D, Ferraz I (2001) Establishment of babassu in pastures in Pará, Brazil. Palms 45:138–147Google Scholar
  34. Mitja D, Miranda I (2010) Weed community dynamics in two pastures grown after clearing Brasilian Amazonian rainforest. Weed Res 50:163–173CrossRefGoogle Scholar
  35. Mitja D, Leal Filho N, Topall O (2000) Impact of fodder crops: Panicum maximum and Brachiaria brizantha on weeds in certain pastures in the parish of Jacundá (Marabá region, Pará, Brazil). III International Weed Science Congress, Foz do IguaçuGoogle Scholar
  36. Mitja D, Miranda I, Velasquez E, Lavelle P (2008) Plant species richness and floristic composition change along a rice-pasture sequence in subsistence farms of Brasilian Amazon, influence on the fallows biodiversity (Benfica, State of Pará). Agr Ecosyst Environ 124:72–84CrossRefGoogle Scholar
  37. Montúfar R, Anthelme F, Pintaud J-C, Balslev H (2011) Disturbance and resilience in tropical american palm populations and communities. Bot Rev 77:426–461CrossRefGoogle Scholar
  38. Mougel B, Lelong C (2008) Classification and information extraction in very high resolution satellite images for tree crops monitoring. In: 28th EARSel Symposium Remote Sensing for a Changing Europe, IstambulGoogle Scholar
  39. Mougel B, Lelong C, Nicolas J-M (2007) Comparison of three segmentation methods for groves recognition in very high resolution satellite images. In: Proceedings of the “PSIP 2007 Conference—Physics in signal and image processing”, MulhouseGoogle Scholar
  40. Peters C, Balick M, Kahn F, Anderson A (1989) Oligarchic forests of economic plants in Amazonia: utilization and conservation of an important tropical resource. Conserv Biol 3:341–349CrossRefGoogle Scholar
  41. Pintaud J-C (2008) An overview of the taxonomy of Attalea (Arecaceae). Rev Peru Biol 15:55–63Google Scholar
  42. RADAMBRASIL (1974) RADAM, Folha SB.22 Araguaia e parte da folha SC.22 Tocantins. Departamento Nacional de Produção Mineral, Rio de JaneiroGoogle Scholar
  43. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  44. Reynal V, Muchagata M, Topall O, Hébette J (1995) Agricultures familiales et développement en front pionnier amazonien. Gret-UAG-UFPa, Point à PitreGoogle Scholar
  45. Rufino M, Costa J, Da Silva V, Andrade L (2008) Conhecimento e uso do ouricuri (Syagrus coronata) e do babaçu (Orbignya phalerata) em Buique, PE, Brasil. Acta Bot Bras 22:1141–1149CrossRefGoogle Scholar
  46. Sala O, Chapin I, Armesto J, Berlow E, Bloomfield JD-S, Huenneke L et al. (2000) Global Biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  47. Sanín M, Anthelme F, Pintaud J-C, Galeano G, Bernal R (2013) Juvenile resilience and adult longevity explain residual populations of the Andean wax palm Ceroxylon quindiuense after deforestation. PLos One 8:1–16CrossRefGoogle Scholar
  48. de Santos MA (2007) Estrato arbóreo nas pastagens de agricultores familiares da comunidade de Benfica, Itupiranga-PA. Trabalho de conclusão de curso de Bacharelado em Agronomia T.C.C., Universidade Federal do ParáGoogle Scholar
  49. Santos A, Mitja D (2011) Pastagens arborizadas no projeto de assentamento Benfica, Município de Itupiranga, Pará, Brasil. Rev Arvore 35:919–930CrossRefGoogle Scholar
  50. Shafri H, Hamdan N, Saripan M (2011) Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. Int J Remote Sens 32:2095–2115CrossRefGoogle Scholar
  51. Shiraishi-Neto J (1999) As quebradeiras de coco no meio norte. NAEA, BelémGoogle Scholar
  52. de Silva MAL (2004) Análise estrutural de florestas secundárias e remanescentes florestais no sudeste do Pará, Brasil. Master’s thesis, Universidade Federal Rural da AmazôniaGoogle Scholar
  53. Silva M (2008) Distribuição do babaçu e sua relação com os fatores geoambientais na bacia do Rio Cocal, Estado do Tocantins. Master’s thesis, Universidade de BrasíliaGoogle Scholar
  54. Smith N (1974) Agouti and babassu. Oryx 12:581–582CrossRefGoogle Scholar
  55. Smith N (2015) Palms and people in the Amazon. Geobotany studies, basics, methods and case studies. Springer, New YorkGoogle Scholar
  56. Srestasathiern P, Rakwatin P (2014) Oil palm tree detection with high resolution multi-spectral satellite Imagery. Remote Sens 6:9749–9774CrossRefGoogle Scholar
  57. Thales M (1999) Imagem fração sombra na caracterização e mapeamento de babaçu (Attalea speciosa Mart ex Spreng.) em áreas de floresta. Master’s thesis, INPEGoogle Scholar
  58. Tomlinson P (1990) The structural biology of palms. Clarendon Press, OxfordGoogle Scholar
  59. Wood S, Ehui S, Alder J, Benin S, Cassman K, Cooper H et al. (2005) Food. In: Hassan R, Ashi N (eds) Ecosystems and human well-being: current state and trends. Island Press, Washington, p 209–242Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • D. Mitja
    • 1
    Email author
  • E. Delaître
    • 1
  • A. M. Santos
    • 1
    • 2
    • 3
  • I. Miranda
    • 2
  • R. F. R. Coelho
    • 4
  • D. J. Macedo
    • 1
  • L. Demagistri
    • 1
  • M. Petit
    • 5
  1. 1.UMR 228 ESPACE DEV (IRD-Institut de Recherche pour le Développement, UM-Université de Montpellier, UG-Université de Guyane, UR-Université de La Réunion, UA-Université des Antilles), MTD-IRDMontpellier Cedex 5France
  2. 2.ISARH-Instituto Ambiental e de Recursos Hídricos, UFRA-Universidade Federal Rural da AmazôniaBelémBrazil
  3. 3.IEDAR-Instituto de Estudos em Desenvolvimento Agrário e Regional (UNIFESSPA-Universidade Federal do Sul e Sudeste do Pará)MarabáBrazil
  4. 4.IFPA-Instituto Federal de Educação, Ciência e Tecnologia do Pará- Campus CastanhalCastanhalBrazil
  5. 5.IRDMontpellierFrance

Personalised recommendations