Skip to main content

Advertisement

Log in

Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E−5 for children and 3.156E−5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E−05 for children and 3.999E−04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171:894–900. doi:10.1016/j.jhazmat.2009.06.081

    Article  CAS  Google Scholar 

  • Agarwal T, Khillare PS, Shridhar V (2006) PAHs contamination in bank sediment of the Yamuna river, Delhi, India. Environ Monit Assess 123:151–166. doi:10.1007/s10661-006-9189-6

    Article  CAS  Google Scholar 

  • Agarwal T, Khillare PS, Shridhar V, Ray S (2009) Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J Hazard Mater 163:1033–1039. doi:10.1016/j.jhazmat.2008.07.058

    Article  CAS  Google Scholar 

  • Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978. doi:10.1289/ehp.6895

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M et al. (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73:1129–1137. doi:10.1016/j.chemosphere.2008.07.019

    Article  CAS  Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–72. doi:10.1023/A:1018465507029

    Article  CAS  Google Scholar 

  • Bosetti C, Boffetta P, La Vecchia C (2007) Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 18:431–446. doi:10.1093/annonc/mdl172

    Article  CAS  Google Scholar 

  • Bouillon S, Dahdouh-Guebas F, Rao A et al. (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39

    Article  CAS  Google Scholar 

  • Burkhard L (2009) Estimation of biota sediment accumulation factor (BSAF) from paired observations of chemical concentrations in biota and sediment, EPA/600/R-06/047. US Environmental Protection Agency, Ecological Risk Assessment Support Center, Cincinnati, OH

  • Chen JW, Wang SL, Hsieh DPH et al. (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ 417–418:68–75. doi:10.1016/j.scitotenv.2011.12.012

    Article  Google Scholar 

  • Chen S-C, Liao C-M (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123. doi:10.1016/j.scitotenv.2005.08.047

    Article  CAS  Google Scholar 

  • Chiang KC, Chio CP, Chiang YH, Liao CM (2009) Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater 166:676–685. doi:10.1016/j.jhazmat.2008.11.084

    Article  CAS  Google Scholar 

  • Devi NL, Yadav IC, Shihua Q et al. (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502. doi:10.1016/j.chemosphere.2015.08.062

    Article  CAS  Google Scholar 

  • Dudhagara DR, Rajpara RK, Bhatt JK et al. (2016) Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ Pollut 213:338–346. doi:10.1016/j.envpol.2016.02.030

    Article  CAS  Google Scholar 

  • Ferreira-baptista L, Miguel E De (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512. doi:10.1016/j.atmosenv.2005.03.026

  • GFEA (2012) Polycyclic aromatic hydrocarbons - harmful to the environment! Toxic! Inevitable? German Federal Environment Agency Press, Germany, p 23

  • Goswami P, Ohura T, Guruge KS et al. (2016) Spatio-temporal distribution, source, and genotoxic potential of polycyclic aromatic hydrocarbons in estuarine and riverine sediments from southern India. Ecotoxicol Environ Saf 130:113–123. doi:10.1016/j.ecoenv.2016.04.016

    Article  CAS  Google Scholar 

  • Gungormus E, Tuncel S, Hakan Tecer L, Sofuoglu SC (2014) Inhalation and dermal exposure to atmospheric polycyclic aromatic hydrocarbons and associated carcinogenic risks in a relatively small city. Ecotoxicol Environ Saf 108:106–113. doi:10.1016/j.ecoenv.2014.06.015

    Article  CAS  Google Scholar 

  • Guzzella L, Roscioli C, Viganò L et al. (2005) Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int 31:523–534. doi:10.1016/j.envint.2004.10.014

    Article  CAS  Google Scholar 

  • Hoseini M, Yunesian M, Nabizadeh R et al. (2015) Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of Tehran, Iran. Environ Sci Pollut Res Int 23:23. doi:10.1007/s11356-015-5355-0

    Google Scholar 

  • Hussain K, Balachandran S, Hoque RR (2015) Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India. Ecotoxicol Environ Saf 122:61–67. doi:10.1016/j.ecoenv.2015.07.008

    Article  CAS  Google Scholar 

  • Hussain M, Rae J, Gilman A, Kauss P (1998) Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 35:527–531

    Article  CAS  Google Scholar 

  • IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans: some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1–868

    Google Scholar 

  • Jakhar JK, Pal AK, Devivaraprasad Reddy A et al. (2012) Fatty acids composition of some selected Indian fishes. Afr J Basic Appl Sci 4:155–160. doi:10.5829/idosi.ajbas.2012.4.5.6627

    CAS  Google Scholar 

  • Kessarkar PM, Rao VP (2007) Organic carbon in sediments of the southwestern margin of india: influence of productivity and monsoon variability during the late quaternary. J Geol Soc India 69:42–52. doi: 0016-7622/2007-69-1-42

    CAS  Google Scholar 

  • Kumar B, Sharma AK, Tyagi A et al. (2012) Distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls and their source identification in urban roadside soils national reference trace organics laboratory, central pollution control board, East Arjun. Arch Appl Sci Res 4:1906–1914

    CAS  Google Scholar 

  • Kumar B, Tyagi J, Verma VK et al. (2014) Concentrations, source identification and health risk of selected priority polycyclic aromatic hydrocarbons in residential street soils. Adv Appl Sci Res Pelagia Res Libr 5:130–139

    Google Scholar 

  • Kumary KSA, Azis PKA, Natarajan P (2001) Sediment characteristics of Poonthura estuary (southwest coast of India) in relation to pollution. Indian J Mar Sci 30:75–80

    CAS  Google Scholar 

  • Kwok CK, Liang Y, Leung SY et al. (2013) Biota-sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of waterbirds. Environ Sci Pollut Res 20:8425–8434. doi:10.1007/s11356-013-1809-4

    Article  CAS  Google Scholar 

  • Li H, Liu G, Cao Y (2014a) Content and distribution of trace elements and polycyclic aromatic hydrocarbons in fly ash from a coal-fired CHP plant. Aerosol Air Qual Res 14:1179–1188. doi:10.4209/aaqr.2013.06.0216

    CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ et al. (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. doi:10.1016/j.scitotenv.2013.08.090

    Article  Google Scholar 

  • Malawska M (2000) Contamination with heavy metals and polycyclic. Water Air Soil Pollut 127:339–349

    Article  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–56. doi:10.1016/j.chemosphere.2006.01.062

    Article  CAS  Google Scholar 

  • Masto RE, Sheik S, Nehru G et al. (2015) Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 6:811–821. doi:10.5194/se-6-811-2015

    Article  Google Scholar 

  • NCAP (2004) Strategies and options for oncreasing and sustaining fisheries and aquaculture production to benefit poor households in India. NCAP, New Delhi

  • NIN (2011) ICMR dietary guidelines for Indians – a manual. ICMR, Hydrabad, India

  • Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300. doi:10.1016/0273-2300(92)90009-X

    Article  CAS  Google Scholar 

  • NYS DOH (2012) Health consultation: hopewell precision area groundwater contamination site town of east fishkill, Dutchess County, New York, NY. Appendix C, DOH procedure for evaluating potential health risks for contaminants of concern. New York

  • Pan E, Sun H, Xu Q, et al. (2015) Polycyclic aromatic hydrocarbons concentrations in drinking water in villages along the huai river in China and their association with high cancer incidence in local population. Biomed Res Int. doi: 10.1155/2015/762832

  • Passuello A, Mari M, Nadal M et al. (2010) POP accumulation in the food chain: Integrated risk model for sewage sludge application in agricultural soils. Environ Int 36:577–583. doi:10.1016/j.envint.2010.04.015

    Article  CAS  Google Scholar 

  • Patel KS, Ramteke S, Naik Y, Sahu BL (2015) Contamination of environment with polycyclic aromatic hydrocarbons in India. J Environ Prot 6:1268–1278

  • Petry T, Schmid P, Schlatter C (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32:639–648. doi:10.1016/0045-6535(95)00348-7

    Article  CAS  Google Scholar 

  • Qu C, Li B, Wu H et al. (2015) Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ Geochem Health 37:587–601. doi:10.1007/s10653-014-9675-7

    Article  CAS  Google Scholar 

  • Ray S, Khillare PS, Agarwal T, Shridhar V (2008) Assessment of PAHs in soil around the International Airport in Delhi, India. J Hazard Mater 156:9–16. doi:10.1016/j.jhazmat.2007.11.099

    Article  CAS  Google Scholar 

  • Reddy MS, Basha S, Joshi HV, Ramachandraiah G (2005) Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere 61:1587–1593. doi:10.1016/j.chemosphere.2005.04.093

    Article  Google Scholar 

  • Singare PU (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull 101:232–42. doi:10.1016/j.marpolbul.2015.09.057

    Article  CAS  Google Scholar 

  • Sukhdhane KS, Pandey PK, Vennila A, et al. (2015) Sources, distribution and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India. Environ Monit Assess. doi: 10.1007/s10661-015-4470-1

  • Suman S, Sinha A, Tarafdar A (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ 545–546:353–360. doi:10.1016/j.scitotenv.2015.12.061

    Article  Google Scholar 

  • Tang L, Tang X-Y, Zhu Y-G et al. (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–8. doi:10.1016/j.envint.2005.05.031

    Article  CAS  Google Scholar 

  • Tarafdar A, Sinha A (2017) Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environ Sci Pollut Res 24:10373–10380. doi:10.1007/s11356-017-8676-3

    Article  CAS  Google Scholar 

  • Teaf CM (2008) Polycyclic aromatic hydrocarbons (PAHs) in urban soil: a Florida risk assessment perspective. Int J Soil Sediment Water 1:1–14

    Google Scholar 

  • Tripathi R, Kumar R, Mudiam MKR et al. (2009) Distribution, sources and characterization of polycyclic aromatic hydrocarbons in the sediment of the river Gomti, Lucknow, India. Bull Environ Contam Toxicol 83:449–454. doi:10.1007/s00128-009-9747-z

    Article  CAS  Google Scholar 

  • Tsai PJ, Shih TS, Chen HL et al. (2004) Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos Environ 38:333–343. doi:10.1016/j.atmosenv.2003.08.038

    Article  CAS  Google Scholar 

  • Tuyen LH, Tue NM, Takahashi S et al. (2014) Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut 194:272–280. doi:10.1016/j.envpol.2014.07.029

    Article  CAS  Google Scholar 

  • USEPA (2003) Priority pollutants. Code Fed Regul (CFR) title 40, Chapter IPart 423, Append A to Part 423, 423. USEPA, Washington, DC.

  • USEPA (1997) Exposure factors handbook. USEPA, Washington, DC.

  • USEPA (1989) Risk assessment guidance for superfund, vol. I: human health evaluation manual (Part A). I:291. doi: EPA/540/1-89/002. USEPA, Washington, DC.

  • USEPA (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. USEPA, Washington, DC.

  • USEPA (2004) Risk assessment guidance for superfund (RAGS), vol. I: human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). USEPA, Washington, DC.

  • USEPA (2009) Risk assessment guidance for superfund, vol. I: human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment). USEPA, Washington, DC.

  • USEPA (2011) Exposure factors handbook: 2011 Edition. USEPA, Washington, DC.

  • USEPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. USEPA, Washington, DC.

  • Wang W, Huang M-J, Kang Y et al. (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527. doi:10.1016/j.scitotenv.2011.07.030

    Article  CAS  Google Scholar 

  • Williams ES, Mahler BJ, Van Metre PC (2013) Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement. Environ Sci Technol 47:1101–1109. doi:10.1021/es303371t

    Article  CAS  Google Scholar 

  • Wu B, Zhang Y, Zhang X-X, Cheng S-P (2011) Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci Total Environ 410–411:112–8. doi:10.1016/j.scitotenv.2011.09.046

    Article  Google Scholar 

  • Yang W, Lang Y, Li G (2014) Cancer risk of polycyclic aromatic hydrocarbons (PAHs) in the soils from Jiaozhou Bay wetland. Chemosphere 112:289–295. doi:10.1016/j.chemosphere.2014.04.074

    Article  CAS  Google Scholar 

  • Yang X, Yu L, Chen Z, Xu M (2016) Bioavailability of polycyclic aromatic hydrocarbons and their potential application in eco-risk assessment and source apportionment in urban river sediment. Sci Rep 6:23134. doi:10.1038/srep23134

    Article  CAS  Google Scholar 

  • Yu B, Xie X, Ma LQ et al. (2014) Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ Sci Pollut Res Int 21:2817–25. doi:10.1007/s11356-013-2190-z

    Article  CAS  Google Scholar 

  • Zhang J, Fan S, Du X et al. (2015) Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-brassica chinensis system. PLoS One 10:1–16. doi:10.1371/journal.pone.0115863

    Google Scholar 

  • Zhao Z, Zhang L, Cai Y, Chen Y (2014) Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol Environ Saf 104:323–331. doi:10.1016/j.ecoenv.2014.01.037

    Article  CAS  Google Scholar 

  • Zhao ZB, Liu K, Xie W et al. (2000) Soluble polycyclic aromatic hydrocarbons in raw coals. J Hazard Mater 73:77–85. doi:10.1016/S0304-3894(99)00178-8

    Article  CAS  Google Scholar 

  • Zhou B, Zhao B (2014) Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model. PLoS One. doi: 10.1371/journal.pone.0085676

  • Zuloaga O, Prieto A, Ahmed K et al. (2013) Distribution of polycyclic aromatic hydrocarbons in recent sediments of Sundarban mangrove wetland of India and Bangladesh: a comparative approach. Environ Earth Sci 68:355–367. doi:10.1007/s12665-012-1743-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhrajyoti Tarafdar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarafdar, A., Sinha, A. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis. Environmental Management 60, 784–795 (2017). https://doi.org/10.1007/s00267-017-0920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0920-6

Keywords

Navigation