Environmental Management

, Volume 60, Issue 4, pp 784–795 | Cite as

Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis

  • Abhrajyoti TarafdarEmail author
  • Alok Sinha


A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E−5 for children and 3.156E−5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E−05 for children and 3.999E−04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.


Cancer risk Polycyclic aromatic hydrocarbons (PAHs) Monte Carlo simulation Soil Sediments 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

267_2017_920_MOESM1_ESM.docx (880 kb)
Supplementary Information


  1. Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171:894–900. doi: 10.1016/j.jhazmat.2009.06.081 CrossRefGoogle Scholar
  2. Agarwal T, Khillare PS, Shridhar V (2006) PAHs contamination in bank sediment of the Yamuna river, Delhi, India. Environ Monit Assess 123:151–166. doi: 10.1007/s10661-006-9189-6 CrossRefGoogle Scholar
  3. Agarwal T, Khillare PS, Shridhar V, Ray S (2009) Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J Hazard Mater 163:1033–1039. doi: 10.1016/j.jhazmat.2008.07.058 CrossRefGoogle Scholar
  4. Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978. doi: 10.1289/ehp.6895 CrossRefGoogle Scholar
  5. Binelli A, Sarkar SK, Chatterjee M et al. (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73:1129–1137. doi: 10.1016/j.chemosphere.2008.07.019 CrossRefGoogle Scholar
  6. Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–72. doi: 10.1023/A:1018465507029 CrossRefGoogle Scholar
  7. Bosetti C, Boffetta P, La Vecchia C (2007) Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 18:431–446. doi: 10.1093/annonc/mdl172 CrossRefGoogle Scholar
  8. Bouillon S, Dahdouh-Guebas F, Rao A et al. (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39CrossRefGoogle Scholar
  9. Burkhard L (2009) Estimation of biota sediment accumulation factor (BSAF) from paired observations of chemical concentrations in biota and sediment, EPA/600/R-06/047. US Environmental Protection Agency, Ecological Risk Assessment Support Center, Cincinnati, OHGoogle Scholar
  10. Chen JW, Wang SL, Hsieh DPH et al. (2012) Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Sci Total Environ 417–418:68–75. doi: 10.1016/j.scitotenv.2011.12.012 CrossRefGoogle Scholar
  11. Chen S-C, Liao C-M (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123. doi: 10.1016/j.scitotenv.2005.08.047 CrossRefGoogle Scholar
  12. Chiang KC, Chio CP, Chiang YH, Liao CM (2009) Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J Hazard Mater 166:676–685. doi: 10.1016/j.jhazmat.2008.11.084 CrossRefGoogle Scholar
  13. Devi NL, Yadav IC, Shihua Q et al. (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502. doi: 10.1016/j.chemosphere.2015.08.062 CrossRefGoogle Scholar
  14. Dudhagara DR, Rajpara RK, Bhatt JK et al. (2016) Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ Pollut 213:338–346. doi: 10.1016/j.envpol.2016.02.030 CrossRefGoogle Scholar
  15. Ferreira-baptista L, Miguel E De (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512. doi: 10.1016/j.atmosenv.2005.03.026
  16. GFEA (2012) Polycyclic aromatic hydrocarbons - harmful to the environment! Toxic! Inevitable? German Federal Environment Agency Press, Germany, p 23Google Scholar
  17. Goswami P, Ohura T, Guruge KS et al. (2016) Spatio-temporal distribution, source, and genotoxic potential of polycyclic aromatic hydrocarbons in estuarine and riverine sediments from southern India. Ecotoxicol Environ Saf 130:113–123. doi: 10.1016/j.ecoenv.2016.04.016 CrossRefGoogle Scholar
  18. Gungormus E, Tuncel S, Hakan Tecer L, Sofuoglu SC (2014) Inhalation and dermal exposure to atmospheric polycyclic aromatic hydrocarbons and associated carcinogenic risks in a relatively small city. Ecotoxicol Environ Saf 108:106–113. doi: 10.1016/j.ecoenv.2014.06.015 CrossRefGoogle Scholar
  19. Guzzella L, Roscioli C, Viganò L et al. (2005) Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environ Int 31:523–534. doi: 10.1016/j.envint.2004.10.014 CrossRefGoogle Scholar
  20. Hoseini M, Yunesian M, Nabizadeh R et al. (2015) Characterization and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban atmospheric particulate of Tehran, Iran. Environ Sci Pollut Res Int 23:23. doi: 10.1007/s11356-015-5355-0 Google Scholar
  21. Hussain K, Balachandran S, Hoque RR (2015) Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India. Ecotoxicol Environ Saf 122:61–67. doi: 10.1016/j.ecoenv.2015.07.008 CrossRefGoogle Scholar
  22. Hussain M, Rae J, Gilman A, Kauss P (1998) Lifetime health risk assessment from exposure of recreational users to polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol 35:527–531CrossRefGoogle Scholar
  23. IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans: some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1–868Google Scholar
  24. Jakhar JK, Pal AK, Devivaraprasad Reddy A et al. (2012) Fatty acids composition of some selected Indian fishes. Afr J Basic Appl Sci 4:155–160. doi: 10.5829/idosi.ajbas.2012.4.5.6627 Google Scholar
  25. Kessarkar PM, Rao VP (2007) Organic carbon in sediments of the southwestern margin of india: influence of productivity and monsoon variability during the late quaternary. J Geol Soc India 69:42–52. doi: 0016-7622/2007-69-1-42Google Scholar
  26. Kumar B, Sharma AK, Tyagi A et al. (2012) Distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls and their source identification in urban roadside soils national reference trace organics laboratory, central pollution control board, East Arjun. Arch Appl Sci Res 4:1906–1914Google Scholar
  27. Kumar B, Tyagi J, Verma VK et al. (2014) Concentrations, source identification and health risk of selected priority polycyclic aromatic hydrocarbons in residential street soils. Adv Appl Sci Res Pelagia Res Libr 5:130–139Google Scholar
  28. Kumary KSA, Azis PKA, Natarajan P (2001) Sediment characteristics of Poonthura estuary (southwest coast of India) in relation to pollution. Indian J Mar Sci 30:75–80Google Scholar
  29. Kwok CK, Liang Y, Leung SY et al. (2013) Biota-sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of waterbirds. Environ Sci Pollut Res 20:8425–8434. doi: 10.1007/s11356-013-1809-4 CrossRefGoogle Scholar
  30. Li H, Liu G, Cao Y (2014a) Content and distribution of trace elements and polycyclic aromatic hydrocarbons in fly ash from a coal-fired CHP plant. Aerosol Air Qual Res 14:1179–1188. doi: 10.4209/aaqr.2013.06.0216 Google Scholar
  31. Li Z, Ma Z, van der Kuijp TJ et al. (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. doi: 10.1016/j.scitotenv.2013.08.090 CrossRefGoogle Scholar
  32. Malawska M (2000) Contamination with heavy metals and polycyclic. Water Air Soil Pollut 127:339–349CrossRefGoogle Scholar
  33. Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–56. doi: 10.1016/j.chemosphere.2006.01.062 CrossRefGoogle Scholar
  34. Masto RE, Sheik S, Nehru G et al. (2015) Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 6:811–821. doi: 10.5194/se-6-811-2015 CrossRefGoogle Scholar
  35. NCAP (2004) Strategies and options for oncreasing and sustaining fisheries and aquaculture production to benefit poor households in India. NCAP, New DelhiGoogle Scholar
  36. NIN (2011) ICMR dietary guidelines for Indians – a manual. ICMR, Hydrabad, IndiaGoogle Scholar
  37. Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300. doi: 10.1016/0273-2300(92)90009-X CrossRefGoogle Scholar
  38. NYS DOH (2012) Health consultation: hopewell precision area groundwater contamination site town of east fishkill, Dutchess County, New York, NY. Appendix C, DOH procedure for evaluating potential health risks for contaminants of concern. New YorkGoogle Scholar
  39. Pan E, Sun H, Xu Q, et al. (2015) Polycyclic aromatic hydrocarbons concentrations in drinking water in villages along the huai river in China and their association with high cancer incidence in local population. Biomed Res Int. doi:  10.1155/2015/762832
  40. Passuello A, Mari M, Nadal M et al. (2010) POP accumulation in the food chain: Integrated risk model for sewage sludge application in agricultural soils. Environ Int 36:577–583. doi: 10.1016/j.envint.2010.04.015 CrossRefGoogle Scholar
  41. Patel KS, Ramteke S, Naik Y, Sahu BL (2015) Contamination of environment with polycyclic aromatic hydrocarbons in India. J Environ Prot 6:1268–1278Google Scholar
  42. Petry T, Schmid P, Schlatter C (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32:639–648. doi: 10.1016/0045-6535(95)00348-7 CrossRefGoogle Scholar
  43. Qu C, Li B, Wu H et al. (2015) Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ Geochem Health 37:587–601. doi: 10.1007/s10653-014-9675-7 CrossRefGoogle Scholar
  44. Ray S, Khillare PS, Agarwal T, Shridhar V (2008) Assessment of PAHs in soil around the International Airport in Delhi, India. J Hazard Mater 156:9–16. doi: 10.1016/j.jhazmat.2007.11.099 CrossRefGoogle Scholar
  45. Reddy MS, Basha S, Joshi HV, Ramachandraiah G (2005) Seasonal distribution and contamination levels of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere 61:1587–1593. doi: 10.1016/j.chemosphere.2005.04.093 CrossRefGoogle Scholar
  46. Singare PU (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull 101:232–42. doi: 10.1016/j.marpolbul.2015.09.057 CrossRefGoogle Scholar
  47. Sukhdhane KS, Pandey PK, Vennila A, et al. (2015) Sources, distribution and risk assessment of polycyclic aromatic hydrocarbons in the mangrove sediments of Thane Creek, Maharashtra, India. Environ Monit Assess. doi:  10.1007/s10661-015-4470-1
  48. Suman S, Sinha A, Tarafdar A (2016) Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ 545–546:353–360. doi: 10.1016/j.scitotenv.2015.12.061 CrossRefGoogle Scholar
  49. Tang L, Tang X-Y, Zhu Y-G et al. (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–8. doi: 10.1016/j.envint.2005.05.031 CrossRefGoogle Scholar
  50. Tarafdar A, Sinha A (2017) Estimation of decrease in cancer risk by biodegradation of PAHs content from an urban traffic soil. Environ Sci Pollut Res 24:10373–10380. doi: 10.1007/s11356-017-8676-3 CrossRefGoogle Scholar
  51. Teaf CM (2008) Polycyclic aromatic hydrocarbons (PAHs) in urban soil: a Florida risk assessment perspective. Int J Soil Sediment Water 1:1–14Google Scholar
  52. Tripathi R, Kumar R, Mudiam MKR et al. (2009) Distribution, sources and characterization of polycyclic aromatic hydrocarbons in the sediment of the river Gomti, Lucknow, India. Bull Environ Contam Toxicol 83:449–454. doi: 10.1007/s00128-009-9747-z CrossRefGoogle Scholar
  53. Tsai PJ, Shih TS, Chen HL et al. (2004) Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmos Environ 38:333–343. doi: 10.1016/j.atmosenv.2003.08.038 CrossRefGoogle Scholar
  54. Tuyen LH, Tue NM, Takahashi S et al. (2014) Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut 194:272–280. doi: 10.1016/j.envpol.2014.07.029 CrossRefGoogle Scholar
  55. USEPA (2003) Priority pollutants. Code Fed Regul (CFR) title 40, Chapter IPart 423, Append A to Part 423, 423. USEPA, Washington, DC.Google Scholar
  56. USEPA (1997) Exposure factors handbook. USEPA, Washington, DC.Google Scholar
  57. USEPA (1989) Risk assessment guidance for superfund, vol. I: human health evaluation manual (Part A). I:291. doi: EPA/540/1-89/002. USEPA, Washington, DC.Google Scholar
  58. USEPA (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. USEPA, Washington, DC.Google Scholar
  59. USEPA (2004) Risk assessment guidance for superfund (RAGS), vol. I: human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). USEPA, Washington, DC.Google Scholar
  60. USEPA (2009) Risk assessment guidance for superfund, vol. I: human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment). USEPA, Washington, DC.Google Scholar
  61. USEPA (2011) Exposure factors handbook: 2011 Edition. USEPA, Washington, DC.Google Scholar
  62. USEPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. USEPA, Washington, DC.Google Scholar
  63. Wang W, Huang M-J, Kang Y et al. (2011) Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ 409:4519–4527. doi: 10.1016/j.scitotenv.2011.07.030 CrossRefGoogle Scholar
  64. Williams ES, Mahler BJ, Van Metre PC (2013) Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement. Environ Sci Technol 47:1101–1109. doi: 10.1021/es303371t CrossRefGoogle Scholar
  65. Wu B, Zhang Y, Zhang X-X, Cheng S-P (2011) Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Sci Total Environ 410–411:112–8. doi: 10.1016/j.scitotenv.2011.09.046 CrossRefGoogle Scholar
  66. Yang W, Lang Y, Li G (2014) Cancer risk of polycyclic aromatic hydrocarbons (PAHs) in the soils from Jiaozhou Bay wetland. Chemosphere 112:289–295. doi: 10.1016/j.chemosphere.2014.04.074 CrossRefGoogle Scholar
  67. Yang X, Yu L, Chen Z, Xu M (2016) Bioavailability of polycyclic aromatic hydrocarbons and their potential application in eco-risk assessment and source apportionment in urban river sediment. Sci Rep 6:23134. doi: 10.1038/srep23134 CrossRefGoogle Scholar
  68. Yu B, Xie X, Ma LQ et al. (2014) Source, distribution, and health risk assessment of polycyclic aromatic hydrocarbons in urban street dust from Tianjin, China. Environ Sci Pollut Res Int 21:2817–25. doi: 10.1007/s11356-013-2190-z CrossRefGoogle Scholar
  69. Zhang J, Fan S, Du X et al. (2015) Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-brassica chinensis system. PLoS One 10:1–16. doi: 10.1371/journal.pone.0115863 Google Scholar
  70. Zhao Z, Zhang L, Cai Y, Chen Y (2014) Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicol Environ Saf 104:323–331. doi: 10.1016/j.ecoenv.2014.01.037 CrossRefGoogle Scholar
  71. Zhao ZB, Liu K, Xie W et al. (2000) Soluble polycyclic aromatic hydrocarbons in raw coals. J Hazard Mater 73:77–85. doi: 10.1016/S0304-3894(99)00178-8 CrossRefGoogle Scholar
  72. Zhou B, Zhao B (2014) Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model. PLoS One. doi:  10.1371/journal.pone.0085676
  73. Zuloaga O, Prieto A, Ahmed K et al. (2013) Distribution of polycyclic aromatic hydrocarbons in recent sediments of Sundarban mangrove wetland of India and Bangladesh: a comparative approach. Environ Earth Sci 68:355–367. doi: 10.1007/s12665-012-1743-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations