Environmental Management

, Volume 60, Issue 4, pp 615–629 | Cite as

Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

  • Benjamin L. Miller
  • Evan V. Arntzen
  • Amy E. Goldman
  • Marshall C. Richmond


The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.


Methane Hydropower Reservoir Temperate Greenhouse gas Ebullition 



This work was funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. Support was also provided by the US Department of Energy, Office of Biological and Environmental Research, as part of Subsurface Biogeochemical Research Program’s Scientific Focus Area at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC06-76RL01830. We thank A. Stewart, M. Bevelhimer, J. Mosher, J. Phillips, and A. Fortner (Oak Ridge National Laboratory) for advice on data acquisition and analysis. We also thank K. Ham, K. Klett, S. Niehus, A. O’Toole, T. Resch, J. Serkowski, and C. Thompson (Pacific Northwest National Laboratory) for assistance with study conception, data acquisition, and analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Aitkenhead JA, McDowell WH (2000) Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob Biochem Cycles 14:127–138. doi: 10.1029/1999GB900083 CrossRefGoogle Scholar
  2. Alin SR, de Fátima M, Rasera FL, Salimon CI, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low‐gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116. doi: 10.1029/2010JG001398
  3. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ. doi: 10.1890/100014
  4. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VL, Del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596. doi: 10.1038/ngeo1211 CrossRefGoogle Scholar
  5. Bartosiewicz M, Laurion I, MacIntyre S (2015) Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia 757:101–115. doi: 10.1007/s10750-015-2240-2 CrossRefGoogle Scholar
  6. Bastviken D, Cole JJ, Pace M, Tranvik L (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles. doi: 10.1029/2004GB002238
  7. Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: A comparison of methods. Environ Sci Technol 36:3354–3361. doi: 10.1021/es010311p CrossRefGoogle Scholar
  8. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi: 10.1126/science.1196808 CrossRefGoogle Scholar
  9. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nature 2:598–600. doi: 10.1038/ngeo618 Google Scholar
  10. Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS (2014) High methane emissions from a midlatitude reservoir draining an agricultural watershed. Environ Sci Technol 48:11100–11108. doi: 10.1021/es501871g CrossRefGoogle Scholar
  11. Bergier I, Novo E, Ramos FM, Mazzi EA, Rasera M (2011) Carbon dioxide and methane fluxes in the littoral zone of a tropical Savanna Reservoir (Corumba, Brazil). Oecologia Australis 15:666–681CrossRefGoogle Scholar
  12. Bevelhimer MS, Stewart AJ, Fortner AM, Phillips JR, Mosher JJ (2016) CO2 is the dominant greenhouse gas emitted from six hydropower reservoirs in Southeastern United States during peak summer emissions. Water 8. doi: 10.3390/w8010015
  13. Casper P, Maberly SC, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1–19. doi: 10.1023/A:1006269900174 CrossRefGoogle Scholar
  14. Castillo MM, Allan JD, Sinsabaugh RL, Kling GW (2004) Seasonal and interannual vaiation of bacterial production in lowland rivers of the Orinoco basin. Freshw Biol 49:1400–1414. doi: 10.1111/j.1365-2427.2004.01277.x CrossRefGoogle Scholar
  15. CBR (Columbia Basin Research) (2013) Columbia River DART (Data Access in Real Time) [online database], Seattle, WA. Scholar
  16. Chen H, Wu Y, Yuan X, Gao Y, Wu N, Zhu D (2009) Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J Geophys Res Atmos 114:1–7. doi: 10.1029/2009JD012410 Google Scholar
  17. Chen H, Yuan X, Chen Z, Wu Y, Liu X, Zhu D, Wu N, Zhu Q, Peng C, Li W (2011) Methane emissions from the surface of the Three Gorges reservoir. J Geophys Res Atmos 116. doi: 10.1029/2011JD016244
  18. Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low‐wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656. doi: 10.4319/lo.1998.43.4.0647 CrossRefGoogle Scholar
  19. Crawford JT, Stanley EH, Spawn SA, Finlay JC, Loken LC, Striegl RG (2014) Ebullitive methane emissions from oxygenated wetland streams. Glob Change Biol 20:3408–3422. doi: 10.1111/gcb.12614 CrossRefGoogle Scholar
  20. Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017. doi: 10.4319/lo.2003.48.3.1010 CrossRefGoogle Scholar
  21. Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66:949–964. doi: 10.1093/biosci/biw117 CrossRefGoogle Scholar
  22. Del Sontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425. doi: 10.1021/es9031369 CrossRefGoogle Scholar
  23. Del Sontro T, McGinnis DF, Wehrli B, Ostrovsky I (2015) Size does matter: Importance of large bubbles and small-scale hot spots for methane transport. Environ Sci Technol 49:1268–1276. doi: 10.1021/es5054286 CrossRefGoogle Scholar
  24. Del Sontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–9873. doi: 10.1021/es2005545 CrossRefGoogle Scholar
  25. Deshmukh C, Serça D, Delon C, Tardif R, Demarty M, Jarnot C, Meyerfeld Y, Chanudet V, Guédant P, Rode W (2014) Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences 11:4251–4269. doi: 10.5194/bg-11-4251-2014 CrossRefGoogle Scholar
  26. Diem T, Koch S, Schwarzenbach S, Wehrli B, Schubert C (2012) Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquatic sciences 74:619–635. doi: 10.1007/s00027-012-0256-5 CrossRefGoogle Scholar
  27. Dodds WK, Jones JR, Welch EB (1998) Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res 32(5):1455–1462. doi: 10.1016/S0043-1354(97)00370-9CrossRefGoogle Scholar
  28. Duchemin E, Lucotte M, Canuel R, Chamberland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region. Glob Biogeochem Cycles 9:529–540. doi: 10.1029/95GB02202 CrossRefGoogle Scholar
  29. Duchemin E, Lucotte M, Queiroz A, Canuel R, da Silva H, Almeida D, Dezincourt J, Ribeiro L (2000) Greenhouse gas emissions from an old tropical reservoir in Amazonia: Curuá-Una reservoir. Verh Internat Verein Limnol 27:1391–1395Google Scholar
  30. Duchemin É, Huttunen JT, Tremblay A, Delmas R, Menezes CFS (2006b) Appendix 3 CH4 Emissions from Flooded Land: Basis for Future Methodological Development, 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry, and Other Land Use.
  31. Duchemin É, Lucotte M, Canuel R, Soumis N (2006a) First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break‐up. Lakes Reserv Manag 11:9–19. doi: 10.1111/j.1440-1770.2006.00285.x CrossRefGoogle Scholar
  32. dos Santos MA, Rosa LP, Sikar B, Sikar E, dos Santos EO (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488. doi: 10.1016/j.enpol.2004.06.015 CrossRefGoogle Scholar
  33. Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Change 2:382–384. doi: 10.1038/nclimate1540 CrossRefGoogle Scholar
  34. Filstrup CT, Scott JT, Lind O (2009) Allochthonous organic matter supplements and sediment transport in a polymictic reservoir determined using elemental and isotopic ratios. Biogeochemistry 96(1):87–100. doi: 10.1007/s10533-009-9346-4 CrossRefGoogle Scholar
  35. Galy‐Lacaux C, Delmas R, Jambert C, Dumestre JF, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycles 11:471–483. doi: 10.1029/97GB01625 CrossRefGoogle Scholar
  36. Galy‐Lacaux C, Delmas R, Kouadio G, Richard S, Gosse P (1999) Long‐term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Glob Biochem Cycles 13:503–517. doi: 10.1029/1998GB900015 CrossRefGoogle Scholar
  37. Goldenfum JA (2012) Challenges and solutions for assessing the impact of freshwater reservoirs on natural GHG emissions. Ecohydrol Hydrobiol 12:115–122. doi: 10.2478/v10104-012-0011-5 CrossRefGoogle Scholar
  38. Grinham A, Dunbabin M, Gale D, Udy J (2011) Quantification of ebullitive and diffusive methane release to atmosphere from a water storage. Atmos Environ 45:7166–7173. doi: 10.1016/j.atmosenv.2011.09.011 CrossRefGoogle Scholar
  39. Harrison JA, Deemer BR, Birchfield MK, O’Malley MT (2017) Reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol. doi: 10.1021/acs.est.6b03185
  40. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi: 10.1023/A:1008119611481 CrossRefGoogle Scholar
  41. Herold A, Monni S, Lin E, Meyer CP (2006) Chapter 4 Methodological Choice and Identification of Key Categories, 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 1 General Guidance and Reporting.
  42. Huttunen JT, Väisänen TS, Hellsten SK, Heikkinen M, Nykänen H, Jungner H, Niskanen A, Virtanen MO, Lindqvist OV, Nenonen OS (2002) Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Glob Biogeochem Cycles 16:3–17. doi: 10.1029/2000GB001316 CrossRefGoogle Scholar
  43. Ibarra G, De la Fuente A, Contreras M (2015) Effects of hydropeaking on the hydrodynamics of a stratified reservoir: the Rapel Reservoir case study. J Hydraul Res 53:760–772. doi: 10.1080/00221686.2015.1060271 CrossRefGoogle Scholar
  44. Jacinthe P, Filippelli G, Tedesco L, Raftis R (2012) Carbon storage and greenhouse gases emission from a fluvial reservoir in an agricultural landscape. Catena 94:53–63. doi: 10.1016/j.catena.2011.03.012 CrossRefGoogle Scholar
  45. Joyce J, Jewell PW (2003) Physical controls on methane ebullition from reservoirs and lakes. Environ Eng Geosci 9(2):167–178. doi: 10.2113/9.2.167 CrossRefGoogle Scholar
  46. Kao SC, McManamay RA, Stewart KM, Samu NM, Hadjerioua B, DeNeale ST, Yeasmin D, Fayzul M, Pasha K, Oubeidillah AA, Smith BT (2014) New stream-reach development: A comprehensive assessment of hydropower energy potential in the United States. Report from Oak Ridge National Laboratory for the US Department of Energy, DOE/EE-1063, Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  47. Keller M, Stallard RF (1994) Methane emission by bubbling from Gatun Lake, Panama. J Geophys Res Atmos 99:8307–8319. doi: 10.1029/92JD02170 CrossRefGoogle Scholar
  48. Kelly C, Rudd J, Bodaly R, Roulet N, Louis StV, Heyes A, Moore T, Schiff S, Aravena R, Scott K (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344. doi: 10.1021/es9604931 CrossRefGoogle Scholar
  49. Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: The importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497. doi: 10.1046/j.1365-2427.2000.00515.x CrossRefGoogle Scholar
  50. Louis VLS, Kelly CA, Duchemin E, Rudd JW, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate reservoirs are sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. BioScience 50:766–775. doi: 10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2CrossRefGoogle Scholar
  51. Maeck A, Hofmann H, Lorke A (2014) Pumping methane out of aquatic sediments: ebullition forcing mechanisms in an impounded river. Biogeosciences 11:2925–2938. doi: 10.5194/bg-11-2925-2014 CrossRefGoogle Scholar
  52. Maeck A, Del Sontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137. doi: 10.1021/es4003907 CrossRefGoogle Scholar
  53. Martinez D, Anderson MA (2013) Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA). Sci Total Environ 454:457–465. doi: 10.1016/j.scitotenv.2013.03.040 CrossRefGoogle Scholar
  54. Matthews CJ, Joyce EM, Louis VLS, Schiff SL, Venkiteswaran JJ, Hall BD, Bodaly RD, Beaty KG (2005) Carbon dioxide and methane production in small reservoirs flooding upland boreal forest. Ecosystems 8:267–285. doi: 10.1007/s10021-005-0005-x CrossRefGoogle Scholar
  55. Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nature 347:718–719. doi: 10.1038/347718b0 CrossRefGoogle Scholar
  56. Mendonça R, Kosten S, Sobek S, Barros N, Cole JJ, Tranvik L, Roland F (2012) Hydroelectric carbon sequestration. Nature Geoscience 5:838–840. doi: 10.1038/ngeo1653 CrossRefGoogle Scholar
  57. Mosher JJ, Fortner AM, Phillips JR, Bevelhimer MS, Stewart AJ, Troia MJ (2015) Spatial and temporal correlates of greenhouse gas diffusion from a hydropower reservoir in the Southern United States. Water 7:5910–5927. doi: 10.3390/w7115910 CrossRefGoogle Scholar
  58. Ostrovsky I, McGinnis DF, Lapidus L, Eckert W (2008) Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnol Oceanogr Methods 6:18. doi: 10.4319/lom.2008.6.105 CrossRefGoogle Scholar
  59. Ramos FM, Lima IB, Rosa RR, Mazzi EA, Carvalho JC, Rasera MF, Ometto JP, Assireu AT, Stech JL (2006) Extreme event dynamics in methane ebullition fluxes from tropical reservoirs. Geophys Res Lett 33. doi: 10.1029/2006GL027943
  60. Rosa LP, Dos Santos MA, Matvienko B, Sikar E, Lourenço RSM, Menezes CF (2003) Biogenic gas production from major Amazon reservoirs, Brazil. Hydrological Processes 17:1443–1450. doi: 10.1002/hyp.1295 CrossRefGoogle Scholar
  61. Rudd JW, Hecky R, Harris R, Kelly C (1993) Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–248Google Scholar
  62. Sobek S, Del Sontro T, Wongfun N, Wehrli B (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett. 39. doi: 10.1029/2011GL050144
  63. Soumis N, Duchemin E, Canuel R, Lucotte M (2004) Greenhouse gas emissions from reservoirs of the western United States. Global Biogeochem Cycles. 18. doi: 10.1029/2003GB002197
  64. Soumis N, Lucotte M, Canuel R, Weissenberger S, Houel S, Larose C, Duchemin E (2005) Hydroelectric reservoirs as anthropogenic sources of greenhouse gases. Surf Water Hydrol. doi: 10.1002/047147844X.sw791
  65. Strayer RF, Tiedje JM (1978) In situ methane production in a small, hypereutrophic, hard-water lake: Loss of methane from sediments by vertical diffusion and ebullition. Limnol Oceanogr 23:1201–1206. doi: 10.4319/lo.1978.23.6.1201 CrossRefGoogle Scholar
  66. Sturm K, Yuan Z, Gibbes B, Werner U, Grinham A (2014) Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia. Biogeosciences 11:5245–5258. doi: 10.5194/bg-11-5245-2014 CrossRefGoogle Scholar
  67. Taylor J (1997) An introduction to error analysis. University Science Books, Sausalito, CAGoogle Scholar
  68. Teodoru CR, Bastien J, Bonneville MC, Giorgio PA, Demarty M, Garneau M, Hélie JF, Pelletier L, Prairie YT, Roulet NT (2012) The net carbon footprint of a newly created boreal hydroelectric reservoir. Glob Biochem Cycles 26.  10.1029/2011GB004187
  69. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: Ecological perspectives. Wiley, New York, NYGoogle Scholar
  70. Tremblay A (2005) Greenhouse gas Emissions-Fluxes and Processes: Hydroelectric reservoirs and natural environments. Springer, New York, NYCrossRefGoogle Scholar
  71. Trojanowska A, Kurasiewicz M, Plesniak L, Jedrysek M (2009) Emission of methane from sediments of selected Polish dam reservoirs. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego 6:368–373Google Scholar
  72. UNFCCC (2014) Reporting requirements. Accessed 26 Dec 2015Google Scholar
  73. UNFCCC (2015) Adoption of the Paris Agreement. Proposal by the President (FCCC/CP/2015/L.9/Rev.1), 12 Dec 2015.
  74. Uría-Martínez R, O’Connor PW, Johnson MM (2015) 2014 Hydropower Market Report. Report from Oak Ridge National Laboratory for the US Department of Energy, DOE/EE-1195, Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  75. USACE (2015) National Inventory of Dams US Army Corps of Engineers. Accessed 19 Dec 2015Google Scholar
  76. USEPA (2015) About the Emissions Inventory. US Greenhouse Gas Inventory Report: 1990–2013. Accessed 26 Dec 2015
  77. Vachon D, Prairie YT (2013) The ecosystem size and shape dependence of gas transfer velocity versus windspeed relationships in lakes. Can J Fish Aquat Sci 70(2):1757–1764. doi: 10.1139/cjfas-2013-0241 CrossRefGoogle Scholar
  78. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin III FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi: 10.1038/nature05040 CrossRefGoogle Scholar
  79. Wanninkhof R (1992) Relationship between wind speed and gas exchange. J Geophys Res 97:7373–7382. doi: 10.1029/92JC00188 CrossRefGoogle Scholar
  80. Wilcock RJ, Sorrell BK (2008) Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments. Water Air Soil Pollut 188:155–170. doi: 10.1007/s11270-007-9532-8 CrossRefGoogle Scholar
  81. Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262. doi: 10.1021/cr60306a003 CrossRefGoogle Scholar
  82. Wilkinson J, Maeck A, Alshboul Z, Lorke A (2015) Continuous seasonal river ebullition measurements linked to sediment methane formation. Environ Sci Technol 49:13121–13129. doi: 10.1021/acs.est.5b01525 CrossRefGoogle Scholar
  83. Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, Del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–495. doi: 10.1038/nature13164 CrossRefGoogle Scholar
  84. Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, Del Giorgio PA, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodwated G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476. doi: 10.1038/nature11205 CrossRefGoogle Scholar
  85. Zhao Y, Wu B, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges reservoir of China. Biogeosciences 10:1219–1230. doi: 10.5194/bg-10-1219-2013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2017

Authors and Affiliations

  1. 1.Ecology Group, Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Hydrology Group, Pacific Northwest National LaboratoryRichlandUSA
  3. 3.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations