Environmental Management

, Volume 60, Issue 1, pp 86–103 | Cite as

Potential Distribution of Mountain Cloud Forest in Michoacán, Mexico: Prioritization for Conservation in the Context of Landscape Connectivity

  • Camilo A. Correa Ayram
  • Manuel E. Mendoza
  • Andrés Etter
  • Diego R. Pérez Salicrup


Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.


Cloud forest Potential distribution modeling Potential connectivity Graph theory Conservation planning México 



The authors would like to thank the project “Evaluación de la importancia relativa de bosque húmedo de niebla bajo un enfoque de paisaje” (clave 179386)”, funded by CONACyT. The first author would like to personally thank CONACyT for the grant awarded to complete his doctoral studies in Geography at UNAM. We would also like to thank Dra. Ángela Cuervo for her valuable feedback on an earlier version of this article and Dr. Oswaldo Téllez for his support in the creation of the bioclimatic layers used in the modeling process. We also thank the two anonymous reviewers for their suggestions and constructive commentary, which aided greatly in improving the manuscript. We also want to thank Ms. Mary-Ann Hall for her support in revising the English version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interest.


  1. Alvarez Verduzco G (2013) (Spatio-temporal assessment in land use and cover changes in the fragments of cloud forest of Michoacan state). Evaluación espacio-temporal de los cambios de cobertura vegetal y uso del terreno en los fragmentos de bosque mesófilo de montaña del Estado de Michoacán. Tesis de Maestría en Geografía. Universidad Nacional Autónoma de MéxicoGoogle Scholar
  2. Andersson E, Bodin Ö (2009) Practical tool for landscape planning? An empirical investigation network based models of habitat fragmentation. Ecography 32:123–132. doi: 10.1111/j.1600-0587.2008.05435.x CrossRefGoogle Scholar
  3. Araiza M et al. (2012) Consensus on criteria for potential areas for wolf reintroduction in Mexico. México Conserv Biol 26:630–637. doi: 10.1111/j.1523-1739.2012.01888.x CrossRefGoogle Scholar
  4. Baldwin R (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854. http://www.mdpi.com/1099-4300/11/4/854Google Scholar
  5. Baranyi G, Saura S, Podani J, Jordán F (2011) Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol Indic 11:1301–1310. doi:10.1016/j.ecolind.2011.02.003CrossRefGoogle Scholar
  6. Barsimantov J, Navia Antezana J (2012) Forest cover change and land tenure change in Mexico’s avocado region: Is community forestry related to reduced deforestation for high value crops? Appl Geogr 32:844–853. doi: 10.1016/j.apgeog.2011.09.001 CrossRefGoogle Scholar
  7. Bazzaz FA (1998) Tropical forests in a future climate: changes in biological diversity and impact on the global carbon cycle. Clim Change 39:317–336. doi: 10.1023/A:1005359605003 CrossRefGoogle Scholar
  8. Benito X, Trobajo R, Ibáñez C (2014) Modelling habitat distribution of Mediterranean Coastal Wetlands: the Ebro Delta as case study. Wetlands 34:775–785. doi: 10.1007/s13157-014-0541-2 CrossRefGoogle Scholar
  9. Bennett AF (1999) (Linkages in the landscape. The role of corridors and connectivity in wildlife conservation. San José, CR, UICN) Enlazando el paisaje: El papel de los corredores y la conectividad en la conservación de la vida silvestre, 278 pGoogle Scholar
  10. Bezaury-Creel JE, Torres JF, Ochoa-Ochoa LM, Castro-Campos M, Moreno N (2009) (Geodatabase of Muncipal Natural Protected Areas of Mexico—Version 2.0), Base de Datos Geográfica de Áreas Naturales Protegidas Municipales de Mexico - Versión 2.0, Julio 31, 2009. The Nature Conservancy/Comisión Nacional para el Conocimiento y Uso de la Biodiversidad/Comisión Nacional de Áreas Naturales ProtegidasGoogle Scholar
  11. Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405. doi: 10.1016/j.ecolmodel.2010.06.017 CrossRefGoogle Scholar
  12. Bravo-Espinosa M, Mendoza ME, Carlón Allende T, Medina L, Sáenz-Reyes JT, Páez R (2014) Effects of converting forest to avocado orchards on topsoil properties in the Trans-Mexican Volcanic System, Mexico. Land Degrad Dev 25:452–467. doi: 10.1002/ldr.2163 CrossRefGoogle Scholar
  13. Brost BM, Beier P (2011) Use of land facets to design linkages for climate change. Ecol Appl 22:87–103. doi: 10.1890/11-0213.1 CrossRefGoogle Scholar
  14. CONABIO (2010). The Humid Mountain Forest in Mexico: threats and opportunities for conservation and sustainable management). El Bosque Mesófilo de Montaña en Mexico: Amenazas y Oportunidades para su Conservación y Manejo Sostenible. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. 197 pp. Mexico D.F.Google Scholar
  15. Correa Ayram CA, Mendoza ME, Pérez Salicrup DR, López Granados E (2014) Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. J Nat Conserv 22:424–435. doi: 10.1016/j.jnc.2014.03.010 CrossRefGoogle Scholar
  16. Correa Ayram CA, Mendoza ME, Etter A, Pérez Salicrup DR (2017) Anthropogenic impact on habitat connectivity: a multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol Indic 72:895–909. doi: 10.1016/j.ecolind.2016.09.007 CrossRefGoogle Scholar
  17. Cruz-Cardenas G, Villasenor JL, Lopez-Mata L, Ortiz E (2012) Potential distribution of humid mountain forest in Mexico. Bot Sci 90:331–340Google Scholar
  18. Cué Bär EM, Villaseñor JL, Arredondo Amezcua L, Cornejo Tenorio G, Ibarra Manríquez G (2006) (The tree flora of Michoacan, Mexico). La flora arbórea de Michoacán, Mexico. Boletín de la Sociedad Botánica de Mexico 78:47–81. http://www.redalyc.org/articulo.oa?id=57707806
  19. Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014) An update of high-resolution monthly climate surfaces for Mexico. Int J Climatol 34:2427–2437. doi: 10.1002/joc.3848 CrossRefGoogle Scholar
  20. Culmsee H, Schmidt M, Schmiedel I, Schacherer A, Meyer P, Leuschner C (2014) Predicting the distribution of forest habitat types using indicator species to facilitate systematic conservation planning. Ecol Indic 37:131–144. doi: 10.1016/j.ecolind.2013.10.010 CrossRefGoogle Scholar
  21. Challenger A (1998) (Use and conservation of terrestrial ecosystems of Mexico: past, present and future). Utilización y Conservación de los Ecosistemas Terrestres de Mexico: Pasado, Presente y Futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad/Universidad Nacional Autónoma de Mexico/Agrupación Sierra Madre, Mexico, Distrito FederalGoogle Scholar
  22. Chávez-León G, Tapia Vargas LM, Bravo Espinoza M, Sáenz Reyes T, Vidales Fernández I, Larios Guzmán A, Rentería Ánima JB, Villaseñor Ramírez FJ, Sánchez Pérez JL, Alcántar Rocillo JJ y, Mendoza ME (2012) (Impact of change of land use forest to orchards of avocado). Impacto del cambio de uso de suelo forestal a huertos de aguacate. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro de Investigación Regional Pacífico Centro, Campo Experimental Uruapan, Libro Técnico Núm. 13, 102 pp. (ISBN: 978-607-425-825-7)Google Scholar
  23. Dilts TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, Esque TC (2016) Multiscale connectivity and graph theory highlight critical areas for conservation under climate change. Ecol Appl 26(4):1223–1237. doi: 10.1890/15-0925 CrossRefGoogle Scholar
  24. Dobler C (2013) (Distribution and land cover change of humid mountain forest in Michoacan, Mexico). Distribución y Cambio de Cobertura del Bosque Húmedo de Montaña en Michoacán, Mexico. Master Thesis, Universidad Nacional Autónoma de MexicoGoogle Scholar
  25. ESRI (2012) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CAGoogle Scholar
  26. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manage 61:603–610. doi: 10.2307/3802168 CrossRefGoogle Scholar
  27. Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the trans-Mexican volcanic belt and the Mexico subduction zone. Tectonophysics 522–523:122–149. doi: 10.1016/j.tecto.2011.09.018 CrossRefGoogle Scholar
  28. Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327. doi: 10.1016/j.envsoft.2012.07.002 CrossRefGoogle Scholar
  29. Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150. doi: 10.1016/j.landurbplan.2013.12.012 CrossRefGoogle Scholar
  30. Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106. doi: 10.1016/S0012-8252(01)00056-3 CrossRefGoogle Scholar
  31. Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55. doi: 10.1016/j.biocon.2010.09.002 CrossRefGoogle Scholar
  32. Gamez N, Escalante T, Rodriguez G, Linaje M, Morrone JJ (2012) Biogeographic characterization of the Transmexican volcanic belt and analysis of the distributional patterns of the mammal fauna. Revista Mexicana De Biodiversidad 83:258–272Google Scholar
  33. García E (1990) (Humidity Ranges). “Rangos de humedad” en Climas. IV.4.10. Atlas Nacional 695 de Mexico. Vol II. Escala 1: 4.000.000. Instituto de Geografía UNAM. MexicoGoogle Scholar
  34. García E (2004) (Modifications to Köppen climate classification system). Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía, Universidad Nacional Autónoma de Mexico, Mexico, D.FGoogle Scholar
  35. García-R I, Nava VJ, Flores RRE, Cházaro BM, Machuca NJA, del Río NE (2002) (Flora of Tancítaro National Park, Michoacan). Flora del Parque Nacional Pico de Tancítaro, Michoacán. Gobierno del Estado de Michoacán de Ocampo, MoreliaGoogle Scholar
  36. García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. Forest Ecol Manage 261:154–161. doi: 10.1016/j.foreco.2010.09.047 CrossRefGoogle Scholar
  37. Gil-Tena A, Brotons L, Fortin M-J, Burel F, Saura S (2013) Assessing the role of landscape connectivity in recent woodpecker range expansion in Mediterranean Europe: forest management implications. Eur J For Res 132:181–194. doi: 10.1007/s10342-012-0666-x CrossRefGoogle Scholar
  38. González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC (2011) The red list of Mexican cloud forest trees. Fauna and Flora International, Cambridge. http://globaltrees.org/rl_mexican_cloudforest.html
  39. Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected forest area networks and the impact of highways: a transnational case study from the Cantabrian Range to the Western Alps (SW Europe). Landsc Urban Plan 101:310–320. doi: 10.1016/j.landurbplan.2011.02.036 CrossRefGoogle Scholar
  40. Hamilton L, Juvik J, Scatena FN (1995) The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In: Hamilton L, Juvik J, Scatena FN (eds) Tropical Montane cloud forests, vol 110. Ecological studies. Springer, New York, pp 1–18. doi: 10.1007/978-1-4612-2500-3_1
  41. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32. doi: 10.1016/j.biocon.2008.10.006 CrossRefGoogle Scholar
  42. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  43. INEGI (2005) (Vector dataset of land use and vegetation, scale 1:250 000, series III). Conjunto de datos vectoriales de uso de suelo y vegetación, escala 1:250 000, serie III (continuo nacional). Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  44. IPCC (2007) Mountains. IPCC Fourth Assessment Report: climate change 2007. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch4s4-4-7.html
  45. Liu S, Deng L, Dong S, Zhao Q, Yang J, Wang C (2014) Landscape connectivity dynamics based on network analysis in the Xishuangbanna Nature Reserve, China. Acta Oecol 55:66–77. doi: 10.1016/j.actao.2013.12.001 CrossRefGoogle Scholar
  46. López H 2010 (Effect of connectivity loss on cloud forest medium-sized mammals diversity in the upper basin of La Antigua river) Efecto de la pérdida de conectividad del bosque mesófilo de monta˜na en la diversidad de mamíferos medianos en la cuenca alta del río La Antigua, Veracruz. PhD thesis, Instituto Nacional de Ecología A.CGoogle Scholar
  47. López-Mata L, Villaseñor JL, Cruz-Cárdenas G, Ortiz E, Ortiz-Solorio C (2012) Environmental predictors of species richness of plants in humid mountain forest of Mexico). Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de Mexico. Bot Sci 90:27–36CrossRefGoogle Scholar
  48. Medina García C, Guevara Féfer F, Martínez Rodríguez MA, Silva Sáenz P, Chávez Carbajal MA, García Ruiz I (2000) (Floristic study in the area of the indigenous community of New San Juan Parangaricutiro). Estudio florístico en el área de la comunidad indígena de nuevo San Juan Parangaricutiro, Michoacán, Mexico. Acta Botánica Mexicana 52:5–41CrossRefGoogle Scholar
  49. Mendoza ME, Granados EL, Geneletti D, Pérez-Salicrup DR, Salinas V (2011) Analysing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Appl Geogr 31:237–250. doi: 10.1016/j.apgeog.2010.05.010 CrossRefGoogle Scholar
  50. Monterroso-Rivas AI, Gómez-Díaz JD, Tinoco-Rueda JA (2013) Cloud forest and climate change scenarios: an evaluation in Hidalgo, Mexico). Bosque mesófilo de montaña y escenarios de cambio climático: una evaluación en Hidalgo, Mexico. Revista Chapingo Serie ciencias forestales y del ambiente 19:29–43CrossRefGoogle Scholar
  51. Núñez GA (2002) (The mammals of the order Carnivora of Michoacan). Los mamíferos del orden carnívora de Michoacán. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, p 105Google Scholar
  52. Núñez G (2005) (The wild mammals of Michoacan. Diversity, biology and importance). Los mamíferos silvestres de Michoacán. Diversidad, Biología e Importancia. Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, p 420Google Scholar
  53. Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27(2):407–416. doi: 10.1111/cobi.12014 CrossRefGoogle Scholar
  54. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21(7):959–967. doi: 10.1007/s10980-006-0013-z CrossRefGoogle Scholar
  55. Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: application to capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J For Res 127:23–31. doi: 10.1007/s10342-006-0165-z CrossRefGoogle Scholar
  56. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. doi: 10.1111/j.1365-2699.2006.01594.x CrossRefGoogle Scholar
  57. Peterson AT et al. (2011) Ecological niches and geographic distributions. Princeton UniversityPress, PrincetonGoogle Scholar
  58. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  59. Ponce-Reyes R, Reynoso-Rosales V-H, Watson JEM, VanDerWal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change 2:448–452CrossRefGoogle Scholar
  60. Price MF, Gratzer G, Duguma LA, Kohler T, Maselli D, Romeo R (2011) Mountain forests in a changing world: realizing values, addressing challenges. FAO, SDC, Rome, www.mountainpartnership.org/fileadmin/user_upload/mountain_partnership/docs/FAO_Mountain-Forests-in-a-Changing-World.pdf Google Scholar
  61. Riordan EC, Rundel PW (2009) Modelling the distribution of a threatened habitat: the California sage scrub. J Biogeogr 36:2176–2188. doi: 10.1111/j.1365-2699.2009.02151.x CrossRefGoogle Scholar
  62. Rubio L, Rodríguez-Freire M, Mateo-Sánchez MC, Estreguil C, Saura S (2012) Sustaining forest landscape connectivity under different land cover change scenarios. For Syst 21:223–235. doi: 10.5424/fs/2012212-02568 Google Scholar
  63. Rubio L, Saura S (2012) Assessing the importance of individual habitat patches as irreplaceable connecting elements: an analysis of simulated and real landscape data. Ecol Complex 11:28–37. doi: 10.1016/j.ecocom.2012.01.003 CrossRefGoogle Scholar
  64. Rzedowski J (1990) (Potential Vegetation. National Atlas of Mexico, nature section. Sheet number IV8.2 Vol. II. Scale: 1:4.000.000). Vegetación potencial. Atlas Nacional de Mexico, sección naturaleza. Hoja IV8.2 Vol. II. Mapa escala: 1:4.000.000. Instituto de Geografía, UNAM, Mexico, D.F.Google Scholar
  65. Sáenz-Romero C, Rehfeldt G, Crookston N, Duval P, St-Amant R, Beaulieu J, Richardson B (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim Change 102:595–623. doi: 10.1007/s10584-009-9753-5 CrossRefGoogle Scholar
  66. Sánchez-Ramos G, Dirzo R (2014) (Mountain cloud forest: a priority threatened ecosystem). El Bosque Mesófilo de Montaña: Un ecosistema prioritario amenazado. In: Gual-Díaz M, Rendón-Correa A (eds) (Mountain cloud forest of Mexico. Diversity, ecology, management). Bosques Mesófilos de Montaña de México. Diversidad, Ecología y Manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, p 352Google Scholar
  67. Santana HG, Mendoza ME, Salinas MV, Pérez-Salicrup DR, Martínez RY, Aburto MI (2014) Preliminary analysis of the biodiversity and structure for tree and scrubs in the mountain cloud forest on the transversal volcanic system from Michoacán, Mexico). Análisis preliminar de la diversidad y estructura arbórea-arbustiva del bosque mesófilo en el Sistema Volcánico Transversal de Michoacán, Mexico. Revista Mexicana de Biodiversidad 85:1105–116Google Scholar
  68. Saura S (2013) (Methods and tools for the analysis of landscape connectivity and integration into conservation plans). Métodos y herramientas para el análisis de la conectividad del paisaje y su integración en los planes de conservación. In: De la Cruz M, Maestre F (eds) (Advances in spatial analysis of ecological data: methodological and applied aspects). Avances en el análisis espacial de datos ecológicos: aspectos metodológicos y aplicados. ECESPA-Asociación Española de Ecología Terrestre, p 1–46. ISBN 978-84-616-3448-4Google Scholar
  69. Saura S, Bodin Ö, Fortin MJ (2014) Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182. doi: 10.1111/1365-2664.12179 CrossRefGoogle Scholar
  70. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availabilityand connectivity in the landscape Ecography 33:523–537.doi: 10.1111/j.1600-0587.2009.05760.x
  71. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103. doi: 10.1016/j.landurbplan.2007.03.005 CrossRefGoogle Scholar
  72. Schloss CA et al. (2011) Systematic conservation planning in the face of climate change: Bet-Hedging on the Columbia plateau. PLoS ONE 6:e28788. doi: 10.1371/journal.pone.0028788 CrossRefGoogle Scholar
  73. Shanthala Devi BS, Murthy MSR, Debnath B, Jha CS (2013) Forest patch connectivity diagnostics and prioritization using graph theory. Ecol Model 251:279–287. doi: 10.1016/j.ecolmodel.2012.12.022 CrossRefGoogle Scholar
  74. Spracklen DV, Righelato R (2014) Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:2741–2754. doi: 10.5194/bg-11-2741-2014 CrossRefGoogle Scholar
  75. Stiels D, Schidelko K, Engler J, Elzen R, Rödder D (2011) Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J Ornithol 152:769–780. doi: 10.1007/s10336-011-0662-9 CrossRefGoogle Scholar
  76. Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398(6728):608–610. doi: 10.1038/19293 CrossRefGoogle Scholar
  77. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68: 571–572Google Scholar
  78. Taylor P, Fahrig L, With KA (2006) Landscape connectivity: back to the basics. In: Crooks K, Sanjayan MA (eds.) Connectivity conservation. Cambridge University Press, CambridgeGoogle Scholar
  79. Téllez-Valdés O, Hutchinson MA, Nix HA, Jones P (2011) (Development of digital climatic surfaces for Mexico). Desarrollo de coberturas digitales climáticas para Mexico. In: Sánchez-Rojas G, Ballesteros CF, Pavon N (eds) Cambio Climático. Aproximaciones para el estudio de su efecto en la biodiversidad. Universidad Autónoma del Estado de Hidalgo, Mexico, p 67–70Google Scholar
  80. Thuiller W, Richardson DM, PyŠEk P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11(12):2234–2250. doi: 10.1111/j.1365-2486.2005.001018.x CrossRefGoogle Scholar
  81. Turc L (1954) Le bilan d’eau des sols: relation entre les precipitation: l’evaporation et l’ecoulement. Ann Agron 5:491–596Google Scholar
  82. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective Ecology 82:1205–1218. doi: 10.2307/2679983
  83. Vázquez-García JA (1995) Cloud forest archipelagos: Preservation of fragmented montane ecosystems in tropical America. In: Hamilton LS, Juvik JO, Scatena FN Eds Tropical montane cloud forests. Springer, New York, NY, p 315–332CrossRefGoogle Scholar
  84. Velazquez A, Toledo VMy, Luna I (2000) Mexican temperate vegetation. In: Barbour MG, Billings WD Eds North American terrestrial vegetation. Cambridge University Press, Cambridge, p 573–592Google Scholar
  85. Vidal-Zepeda R (1990) (Mean annual precipitation). Precipitación media anual. En Precipitación. IV.4.10. Atlas Nacional de Mexico. Vol. II. Escala 1:4000000. Instituto de Geografía, UNAM. 874 MexicoGoogle Scholar
  86. Villaseñor GLE (2005) (The biodiversity in Michoacan: state study). La biodiversidad en Michoacán: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Secretaría de Urbanismo y Medio Ambiente, Universidad Michoacana de San Nicolás de Hidalgo, MexicoGoogle Scholar
  87. Villaseñor JL (2010) (The humid mountain forest in Mexico and their vascular plants: floristic-taxonomic dataset). El bosque húmedo de Montaña en Mexico y sus plantas vasculares: catálogo florístico-taxonómico. CONABIO. Universidad Nacional Autónoma de Mexico, Mexico, DF, p 40Google Scholar
  88. Villavicencio R, Saura S, Santiago AL, Chávez A (2009) (The forest connectivity of protected areas in the state of Jalisco with other natural environments). La conectividad forestal de las áreas protegidas del estado de Jalisco con otros ambientes naturales. Sci CUCBA 110(1-2):43–50Google Scholar
  89. Warren DL, Glor RE, Turelli M, Funk D (2008) Environmental Niche equivalency versus conservatism: quantitative approaches to Niche evolution. Evolution 62(11):2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x CrossRefGoogle Scholar
  90. Warren DL, Seifert SN (2010) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342. doi: 10.1890/10-1171.1 CrossRefGoogle Scholar
  91. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models Ecography 33:607–611. doi: 10.1111/j.1600-0587.2009.06142.x
  92. Weber TC (2011) Maximum entropy modeling of mature hardwood forest distribution in four U.S. For Ecol Manage 261:779–778. doi: 10.1016/j.foreco.2010.12.009 CrossRefGoogle Scholar
  93. Wessa P (2012) Pearson correlation (v1.0.6). In: Free Statistics Software (v1.1.23-r7), office for research development and education. http://www.wessa.net/rwasp_correlation.wasp/Google Scholar
  94. Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design landscape and urban planning 95:181–191. doi: 10.1016/j.landurbplan.2010.01.002

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centro Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y RuralesPontificia Universidad JaverianaBogotá DCColombia
  3. 3.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations