Environmental Management

, Volume 59, Issue 6, pp 1017–1033 | Cite as

Keystone Species, Forest and Landscape: A Model to Select Protected Areas

  • Daniela Barbosa da Silva Lins
  • Fernando Ravanini Gardon
  • João Frederico da Costa Azevedo Meyer
  • Rozely Ferreira dos Santos


The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.


Forest conservation Keystone species Spatial parameters 



The authors thank to Fundação Carolina—Santander, FF (Fundação Florestal) and COTEC (Comissão Técnico-Científica do Instituto Florestal) for financial sponsoring and supporting the study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

267_2017_832_MOESM1_ESM.docx (10.1 mb)
Supplementary Information


  1. Aguilar C, Herrero J, Polo MJ (2010) Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrol Earth Syst Sc 14:2479–2494. doi: 10.5194/hess-14-2479-2010 CrossRefGoogle Scholar
  2. Alves LF (1994) Competição intraespecífica e padrão espacial em uma população de Euterpe edulis Mart. (Arecaceae). Dissertion, University of CampinasGoogle Scholar
  3. De Andrade ACS (2001) The effect of moisture content and temperature on the longevity of heart of palm seeds (Euterpe edulis M.). Seed Sci Technol 29:171–182Google Scholar
  4. Bernardo CSS, Lloyd H, Olmos F, Cancian LF, Galetti M (2011) Using post-release monitoring data to optimize avian reintroduction programs: a 2-year case study from the Brazilian Atlantic Rainforest. Anim Conserv 14:676–686. doi: 10.1111/j.1469-1795.2011.00473.x CrossRefGoogle Scholar
  5. Bertolo LS, Agar PM, Pablo CL, Santos RF (2012) Boundaries and mosaics: an approach to evaluate changes and to profit landscape planning, São Sebastião Island, SP/Brazil. Bosque (Valdivia) 33:303–308. doi: 10.4067/S0717-92002012000300013 CrossRefGoogle Scholar
  6. Boscolo D, Metzger JP (2011) Isolation determines patterns of species presence in highly fragmented landscapes. Ecography 34:1018–1029. doi: 10.1111/j.1600-0587.2011.06763.x CrossRefGoogle Scholar
  7. Brancalion PHS, Novembre ADLC, Rodrigues RR (2011) Seed development, yield and quality of two palm species growing in different tropical forest types in SE Brazil: implications for ecological restoration. Seed Sci Technol 39:412–424. doi: 10.15258/sst.2011.39.2.13 CrossRefGoogle Scholar
  8. Brancalion PHS, Viani RAG, Aronson J, Rodrigues RR, Nave AG (2012) Improving planting stocks for the Brazilian Atlantic forest restoration through community-based seed harvesting strategies. Restor Ecol 20:704–711. doi: 10.1111/j.1526-100X.2011.00839.x CrossRefGoogle Scholar
  9. Brasil (2014). Lista Nacional Oficial das Espécies da Flora Ameaçadas de Extinção. http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=18/12/2014&jornal=1&pagina=110&totalArquivos=144. Accessed 22 December 2015Google Scholar
  10. Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodology for landscape analyses. Ecol Model 168:233–249. http://dx.doi.org/10.1016/S0304-3800(03)00139-X CrossRefGoogle Scholar
  11. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995. doi: 10.1890/04-0923 CrossRefGoogle Scholar
  12. Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF, BrasíliaGoogle Scholar
  13. CBD—Convention on Biological Diversity (2012) Resourcing the Aichi Biodiversity Targets: a first assessment of the resources required for implementing the strategic plan for biodiversity 2011—2020. https://www.cbd.int/doc/meetings/fin/hlpgar-sp-01/official/hlpgar-sp-01-01-report-en.pdf. Accessed 22 December 2015
  14. Conte R, Reis MS, Reis A, Mantovani A, Mariot A, Fantini AC, Nodari RO (2000) Dinâmica da regeneração natural de Euterpe edulis. Sellowia 49/52:106–130Google Scholar
  15. Conti R (2004) Genetic structure of Euterpe edulis Mart. populations submitted to human exploitation using allozymic and microsatellite markers. University of São Paulo. (Ph.D. thesis)Google Scholar
  16. Echeverria C, Gatica P, Fuentes R (2013) Habitat edge contrast as an indicator to prioritize sites for ecological restoration at the landscape scale. Nat Conservação 11:170–175. doi: 10.4322/natcon.2013.026 CrossRefGoogle Scholar
  17. Fadini RF, Fleury M, Donatti CI, Galetti M (2009) Effects of frugivore impoverishment and seed predators on the recruitment of a keystone palm. Acta Oecol 35:188–196. doi: 10.1016/j.actao.2008.10.001 CrossRefGoogle Scholar
  18. Fantini AC, Guries RP (2007) Forest structure and productivity of palmiteiro (Euterpe edulis Martius) in Brazilian Mata Atlântica. Forest Ecol Manag 242:185–194. doi: 10.1016/j.foreco.2007.01.005 CrossRefGoogle Scholar
  19. Fantini AC, Reis MS, Portilho WG (1993) Demografia de Euterpe edulis no Vale do Rio Ribeira de Iguape-SP. SBS/SBEF, Curitiba. Anais. São Paulo, In: 7 Congresso Florestal BrasileiroGoogle Scholar
  20. Galanes IT, Thomlinson JR (2009) Relationships between spatial configuration of tropical forest patches and wood plant diversity in northeastern Puerto Rico. Plant Ecol 201:101–113. doi: 10.1007/978-90-481-2795-5_9 CrossRefGoogle Scholar
  21. Galetti M, Aleixo A (1998) Effects of palm heart harvesting on avian frugivores in the Atlantic rain forest of Brazil. J Appl Ecol 35:286–293. doi: 10.1046/j.1365-2664.1998.00294.x CrossRefGoogle Scholar
  22. Gascon C, Lovejoy TE, Bierregaard Jr RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229. doi: 10.1016/S0006-3207(99)00080-4 CrossRefGoogle Scholar
  23. Gomes PB (2003) Germinação de duas espécies de palmeiras (Geonoma brevispatha e Euterpe edulis) de uma Floresta Paludícola no Sudeste do Brasil. Dissertion, University of Campinas.Google Scholar
  24. Hardt E, Santos RF, Pablo CL, Agar PM, Pereira-Silva EFL (2013) Utility of landscape mosaics and boundaries in forest conservation decision making in the Atlantic forest of Brazil. Lands Ecol 28:385–399. doi: 10.1007/s10980-013-9845-5 CrossRefGoogle Scholar
  25. Jesus FM, Pivello VR, Meirelles ST, Franco GADC, Metzger JP (2012) The importance of landscape structure for seed dispersal in rain forest fragments. J Veg Sci 23:1126–1136. doi: 10.1111/j.1654-1103.2012.01418.x CrossRefGoogle Scholar
  26. Kojima JM (2004) Estrutura populacional da palmeira Euterpe edulis Martius (Arecaceae) em uma área de Floresta Atlântica do Parque Estadual da Ilha do Cardoso, Estado de São Paulo. Dissertion, São Paulo State University “Júlio de Mesquita Filho”.Google Scholar
  27. Kurtz BC, Gomes JC, Scarano FR (2013) Structure and phytogeographic relationships of swamp forests of Southeast Brazil. Acta Bot Bras 27:647–660. doi: 10.1590/S0102-33062013000400002 CrossRefGoogle Scholar
  28. Laps RE (1996) Frugivoria e dispersão de sementes de palmiteiro (Euterpe edulis, Arecaceae) na Mata Atlântica sul do Estado de São Paulo. Dissertion, University of CampinasGoogle Scholar
  29. Laurance WF et al. (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294. doi: 10.1038/nature11318 CrossRefGoogle Scholar
  30. Lorenzi H et al. (2004) Palmeiras brasileiras e exóticas cultivadas. Instituto Plantarum, Nova OdessaGoogle Scholar
  31. Martins CC, Bovi MLA, Nakagawa J, Machado CG (2009) Drying and storage of Euterpe edulis seeds. Revista Árvore 33:635–642. doi: 10.1590/S0100-67622009000400006 CrossRefGoogle Scholar
  32. Martins CC, Nakagawa J, Bovi MLA (1999) Desiccation tolerance of four seedlots from Euterpe edulis Mart. Seed Sci Technol 28:1–13Google Scholar
  33. McGarigal K, Cushman AS, Neel MC, Ene E (2002) FRAGSTATS v3: spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  34. Melo FPL, Arroyo-Rodrıguez V, Fahrig L, Martınez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:461–468. doi: 10.1016/j.tree.2013.01.001 CrossRefGoogle Scholar
  35. Metzger JP, Muller E (1996) Characterizing the complexity of landscape boundaries by remote sensing. Lands Ecol 11:65–77. doi: 10.1007/BF02093740 CrossRefGoogle Scholar
  36. Mortara MO (2000) Palm tree (Euterpe edulis Martius) potencial distribution modeling in a mountainous region based on topographic variables. Dissertion, Instituto nacional de pesquisas espaciais—INPEGoogle Scholar
  37. Mortara MO, Valeriano DM (2001) Modelagem da distribuição potencial do palmiteiro (Euterpe edulis Martius) a partir de variáveis topográficas. Anais. SBSR, Foz do Iguaçu, INPE 10:459–471Google Scholar
  38. Muler AE, Rother DC, Brancalion PHS, Naves RP, Rodrigues RR, Pizo MA (2014) Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. Forest Ecol Manag 324:117–125. doi: 10.1016/j.foreco.2013.09.001 CrossRefGoogle Scholar
  39. Nakazono EM, Costa MC, Futatsugi K, Paulilo MTS (2001) Early growth of Euterpe edulis Mart. in different light environments. Braz J Bot 24:173–179. doi: 10.1590/S0100-84042001000200007 CrossRefGoogle Scholar
  40. Narezi G, Marques EM (2012) Agroecologia como ferramenta de conservação da sociobiodiversidade em Reservas de Desenvolvimento Sustentável no Estado de São Paulo. 6 Encontro Nacional da Anppas, Belém, Brasil, InGoogle Scholar
  41. Nettesheim FC, Conto T, Pereira MG, Machado DL (2015) Contribution of topography and incident solar radiation to variation of soil and plant litter at an area with heterogeneous terrain. Rev Bras Ciênc Solo 39:750–762. doi: 10.1590/01000683rbcs20140459 CrossRefGoogle Scholar
  42. Nodari RO, Fantini AC, Reis A, Reis MS (2000) Restauração de populações de Euterpe edulis Martius (Arecaceae) na mata atlântica. Sellowia 49/52:189–201Google Scholar
  43. Nogueira Junior LR, Fisch ST, Ballestero SD (2003) Influência da umidade do solo no desenvolvimento inicial de plantas do palmiteiro Euterpe edulis Mart. em floresta nativa. Revista Biociências 9:7–13Google Scholar
  44. Oliveira KF et al. (2014) Structure and spatial distribution of palm populations at different altitudes in Serra do Mar, Ubatuba, São Paulo, Brazil. Rodriguésia 65:1043–1055CrossRefGoogle Scholar
  45. Payés ACL, Pavão T, Santos RF, (2013) The conservation success over time: Evaluating the land use and cover change in a protected area under a long re-categorization process. Land Use Policy 30 (1):177–185CrossRefGoogle Scholar
  46. Pizo MA, Simão I (2001) Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecol 22:229–233. doi: 10.1016/S1146-609X(01)01108-0 CrossRefGoogle Scholar
  47. Power ME, Mills LS (1995) The keystone cops meet in Hilo. Trends Ecol Evol 10:182–184. doi: 10.1016/S0169-5347(00)89047-3 CrossRefGoogle Scholar
  48. Primack RB, Rodrigues E (2001) Biologia da conservação. Planta, LondrinaGoogle Scholar
  49. Reis A (2002) Restauração e manejo do palmito na Mata Atlântica. In: Schaffer WB, Prochnow M (eds) A mata Atlântica e você. Apremavi, Brasilia, pp 59–62Google Scholar
  50. Reis A, Kageyama PY, Reis MS, Fantini AC (1996) Demografia de Euterpe edulis Martius (Arecaceae) em uma Floresta Ombrófila Densa Montana, em Blumenal (SC). Sellowia 47:3–33Google Scholar
  51. Reis A, Kageyama PY (2000) Dispersão de sementes de palmiteiro (Euterpe edulis Martius—Palmae). In: Reis MS, Reis A (eds) Euterpe edulis Martius—(Palmiteiro) Biologia, Conservação e Manejo. Herbário Barbosa Rodrigues, Itajaí, pp 60–92Google Scholar
  52. Reis MS, Conte R, Nodari RO, Fantini AC, Reis A, Mantovani A, Mariot A (2000a) Manejo sustentável e produtividade do Palmiteiro (Euterpe edulis Martius—Arecaceae). Sellowia 49/52:202–224Google Scholar
  53. Reis MS, Fantini AC, Nodari RO, Reis A, Guerra MP, Mantovani A (2000b) Management and conservation of natural populations in Atlantic rain forest: the case study of palm heart (Euterpe edulis Martius). Biotropica 32:894–902. doi: 10.1111/j.1744-7429.2000.tb00627.x CrossRefGoogle Scholar
  54. Rempel R (2006) Patch Analyst version 3.0. Ontario Ministry of Natural Resources. Centre for Northern Forest Ecosystem Research, Thunder Bay, OntarioGoogle Scholar
  55. Roberto GG, Habermann G (2010) Morphological and physiological responses of the recalcitrant Euterpe edulis seeds to light, temperature and gibberellins. Seed Sci Technol 38:367–378CrossRefGoogle Scholar
  56. Roldán-Martín MJ, Pablo CL, Agar PM (2006) Landscapes changes over time: comparison of land uses, boundaries and mosaics. Landsc Ecol 21:1075–1088. doi: 10.1007/s10980-006-7245-9 CrossRefGoogle Scholar
  57. Saaty TL (1990) Physics as a decision theory. Eur J Oper Res 48:98–104. doi: 10.1016/0377-2217(90)90066-K CrossRefGoogle Scholar
  58. Sanderson EW, Redford KH, Vedder A, Coppolillo PB, Ward SE (2002) A conceptual model for conservation planning based on landscape species requirements. Landsc Urban Plan 58:41–56. doi: 10.1016/S0169-2046(01)00231-6 CrossRefGoogle Scholar
  59. Seoane CES (2005) Efeitos da fragmentação florestal sobre o sistema de reprodução e a imigração de sementes de remanescentes populacionais de Euterpe edulis Martius. University of Campinas. (Ph.D. thesis)Google Scholar
  60. Silva DM (1991) Estrutura de tamanho e padrão espacial de uma população de Euterpe edulis Mart. (Arecaceae) em Mata Mesófila Semidecídua no Município de Campinas, SP. University of Campinas. (Ph.D. thesis)Google Scholar
  61. Terra TN, Santos RF, Costa DC, (2014) Land use changes in protected areas and their future: The legal effectiveness of landscape protection. Land Use Policy 38:378–387CrossRefGoogle Scholar
  62. Tsukamoto Filho AA, Macedo RLG, Venturin N, Morais AR (2001) Aspectos fisiológicos e silviculturais do palmiteiro (Euterpe edulis Martius) plantado em diferentes tipos de consórcios no município de lavras, Minas Gerais. Cerne 7:41–53Google Scholar
  63. Turner MG (2005) Landscape ecology: what is the state of the science? Annu Ver Ecol Evol Syst 36:319–344. doi: 10.1146/annurev.ecolsys.36.102003.152614 CrossRefGoogle Scholar
  64. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New YorkGoogle Scholar
  65. Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519. doi: 10.1016/j.biocon.2005.01.001 CrossRefGoogle Scholar
  66. Valiente-Banuet A et al. (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. doi: 10.1111/1365-2435.12356 CrossRefGoogle Scholar
  67. Wen B (2009) Storage of recalcitrant seeds: a case study of the Chinese fan palm, Livistona chinensis. Seed Sci Technol 37:167–179CrossRefGoogle Scholar
  68. Wiens J, Moss MR (2005) Issues and perspectives in landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  69. Wright SJ (2010) The future of tropical forests. Ann N.Y. Acad Sci 1195:1–27. doi: 10.1111/j.1749-6632.2010.05455.x CrossRefGoogle Scholar
  70. Wu J, Hobbs RJ (2007) Key topics in landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Water, Energy and Environmental ResourcesUniversity of CampinasCampinasBrazil
  2. 2.Department of EcologyUniversity of São Paulo, Rua do MatãoSão PauloBrazil
  3. 3.Institute of Mathematics, Statistics, and Scientific ComputationUniversity of CampinasCampinasBrazil

Personalised recommendations