Environmental Management

, Volume 59, Issue 3, pp 410–418 | Cite as

Recovery of Forest and Phylogenetic Structure in Abandoned Cocoa Agroforestry in the Atlantic Forest of Brazil

  • Samir Gonçalves Rolim
  • Regina Helena Rosa Sambuichi
  • Götz Schroth
  • Marcelo Trindade Nascimento
  • José Manoel Lucio Gomes
Article

Abstract

Cocoa agroforests like the cabrucas of Brazil's Atlantic forest are among the agro-ecosystems with greatest potential for biodiversity conservation. Despite a global trend for their intensification, cocoa agroforests are also being abandoned for socioeconomic reasons especially on marginal sites, because they are incorporated in public or private protected areas, or are part of mandatory set-asides under Brazilian environmental legislation. However, little is known about phylogenetic structure, the processes of forest regeneration after abandonment and the conservation value of former cabruca sites. Here we compare the vegetation structure and composition of a former cabruca 30–40 years after abandonment with a managed cabruca and mature forest in the Atlantic forest region of Espirito Santo, Brazil. The forest in the abandoned cabruca had recovered a substantial part of its original structure. Abandoned cabruca have a higher density (mean ± CI95 %: 525.0 ± 40.3 stems per ha), basal area (34.0 ± 6.5 m2 per ha) and species richness (148 ± 11.5 species) than managed cabruca (96.0 ± 17.7; 24.15 ± 3.9 and 114.5 ± 16.0, respectively) but no significant differences to mature forest in density (581.0 ± 42.2), basal area (29.9.0 ± 3.3) and species richness (162.6 ± 15.5 species). Thinning (understory removal) changes phylogenetic structure from evenness in mature forest to clustering in managed cabruca, but after 30–40 years abandoned cabruca had a random phylogenetic structure, probably due to a balance between biotic and abiotic filters at this age. We conclude that abandoned cocoa agroforests present highly favorable conditions for the regeneration of Atlantic forest and could contribute to the formation of an interconnected network of forest habitat in this biodiversity hotspot.

Keywords

Diversity recovery Forest regeneration Land-use effects Human-modified ecosystems 

Notes

Acknowledgments

We thank Domingos Folli and Jonacyr Souza for field assistence; and John Portress for preparation of Fig. 1. We thank C. Wheeler and one anonymous reviewer for helpful suggestions on manuscript. The views expressed in this document are those of the authors and do not necessarily reflect those of the United Nations Development Programme.

Author Contributions

SGR, MTN, JMLG performed the experiments; SGR analyzed the data; SGR, RHRS, GS, MTN, wrote and edited the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Asare R, Afari-Sefa V, Osei-Owusu Y, Pabi O (2014) Cocoa agroforestry for increasing forest connectivity in a fragmented landscape in Ghana. Agrofor Syst 88:1143–1156CrossRefGoogle Scholar
  2. Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evo 23:261–267CrossRefGoogle Scholar
  3. Cassano CR, Kierulff MCM, Chiarello AG (2011) The cacao agroforests of the Brazilian Atlantic forest as habitat for the endangered maned sloth Bradypus torquatus. Mamm Biol 76:243–250Google Scholar
  4. Cassano CR, Schroth G, Faria D, Delabie JHC, Bede L (2009) Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodivers Conserv 18:577–603CrossRefGoogle Scholar
  5. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. User’s Guide and application published at: http://purl.oclc.org/estimates
  6. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21CrossRefGoogle Scholar
  7. Dale VH, Beyeler SC (2001) Challenges in the development and use of ecological indicators. Ecol Indic 1:3–10CrossRefGoogle Scholar
  8. Delabie JHC, Jahyny B, do Nascimento IC, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers Conserv 16:2359–2384CrossRefGoogle Scholar
  9. Ding Y, Zang R, Letcher SG, Liu S, He F (2012) Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121:1263–1270CrossRefGoogle Scholar
  10. Faria D, Laps RR, Baumgarten J, Cetra M (2006) Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers Conserv 15:587–612CrossRefGoogle Scholar
  11. Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends Ecol Evo 11:119–124CrossRefGoogle Scholar
  12. Gama-Rodrigues EF, Ramachandran Nair PK, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manage 45:274–283CrossRefGoogle Scholar
  13. Gomes JML (2006) Regeneração natural em uma floresta ombrófila densa aluvial sob diferentes usos do solo no delta do rio Doce. Dissertação, Universidade Estadual Norte Fluminense, RJ, BrasilGoogle Scholar
  14. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  15. Griscom HP, Griscom BW, Ashton MS (2009) Forest regeneration from pasture in the dry tropics of Panama: effects of cattle, exotic grass, and forested riparia. Restor Ecol 17:117–126CrossRefGoogle Scholar
  16. Guariguata MR, Dupuy JM (1997) Forest regeneration in abandoned logging roads in lowland Costa Rica1. Biotropica 29:15–28CrossRefGoogle Scholar
  17. Guevara S, Purata SE, Van der Maarel E (1986) The role of remnant forest trees in tropical secondary succession. Vegetatio 66:77–84Google Scholar
  18. Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:9–18Google Scholar
  19. Holl KD, Loik ME, Lin EHV, Samuels IA (2000) Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8:339–349CrossRefGoogle Scholar
  20. IUSS Working Group (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  21. Johns ND (1999) Conservation in Brazil’s chocolate forest: the unlikely persistence of the traditional cocoa agroecosystem. Environ Manage 23:31–47CrossRefGoogle Scholar
  22. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefGoogle Scholar
  23. Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:S86–S99CrossRefGoogle Scholar
  24. Lani JL (1998) Deltas dos rios Doce e Itapemirim: Solos, com ênfase nos tiomórficos, água e impacto ambiental do uso. Viçosa, MG, Universidade Federal de Federal de Viçosa, 169p, (PhD. Thesis)Google Scholar
  25. Letche SG, Chazdon RL, Andrade AC, Bongers F, van Breugel M, Finegan B, Laurance SG, Mesquita RC, Martinez-Ramos M, Williamson GB (2012) Phylogenetic community structure during succession: evidence from three Neotropical forest sites. Perspect Plant Ecol Evol Syst 14:79–87CrossRefGoogle Scholar
  26. Lima RAF, Batista JLF, Prado PI (2015) Modeling tree diameter distributions in natural forests: an evaluation of 10 statistical models. Forest Sci 61:320–327CrossRefGoogle Scholar
  27. Mo X-X, Shi L-L, Zhang Y-J, Zhu H, Slik JWF (2013) Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in southwest China. PLoS One 8:e71464CrossRefGoogle Scholar
  28. Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma. Nature 434:561–562CrossRefGoogle Scholar
  29. Mori SA, Boom BM, de Carvalino AM, dos Santos TS (1983) Ecological importance of Myrtaceae in an Eastern Brazilian Wet Forest. Biotropica 15:68CrossRefGoogle Scholar
  30. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  31. Oliveira LC, Hankerson SJ, Dietz JM, Raboy BE (2010) Key tree species for the golden-headed lion tamarin and implications for shade-cocoa management in southern Bahia, Brazil. Anim Conserv 13:60–70CrossRefGoogle Scholar
  32. Pardini R (2004) Effects of forest fragmentation on small mammals in an Atlantic forest landscape. Biodivers Conserv 13:2567–2586CrossRefGoogle Scholar
  33. Piasentin FB (2011) O sistema de cabruca no sudeste da Bahia: perspectivas de sustentabilidade. Dissertação, Universidade de Brasília, DF, BrasilGoogle Scholar
  34. Piasentin FB, Saito CH (2014) Os diferentes métodos de cultivo de cacau no sudeste da Bahia, Brasil: aspectos históricos e percepções. Bol Mus Para Emilio Goeldi Ciênc Hum 9:61–78CrossRefGoogle Scholar
  35. Piasentin FB, Saito H (2012) Caracterização do cultivo do cacau na região econômica litoral sul da Bahia. Estud Debate 19:63–80Google Scholar
  36. Piotto D, Montagnini F, Thomas W, Ashton M, Oliver C (2009) Forest recovery after swidden cultivation across a 40-year chronosequence in the Atlantic forest of southern Bahia, Brazil. Plant Ecol 205:261–272CrossRefGoogle Scholar
  37. Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc B Biol 268:2383–2389CrossRefGoogle Scholar
  38. Raboy BE, Christman MC, Dietz JM (2004) The use of degraded and shade cocoa forests by endangered golden-headed lion tamarins Leontopithecus chrysomelas. Oryx 38:75–83CrossRefGoogle Scholar
  39. Rezende CL, Uezu A, Scarano FR, Araujo DSD (2015) Atlantic forest spontaneous regeneration at landscape scale. Biodivers Conserv 24:2255–2272CrossRefGoogle Scholar
  40. Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:167–173CrossRefGoogle Scholar
  41. Rigueira DMG, da Rocha PLB, Mariano-Neto E (2013) Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic forest: resources for conservation. Biodivers Conserv 22:3141–3163CrossRefGoogle Scholar
  42. Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic forest. Biol Conserv 142:1242–1251CrossRefGoogle Scholar
  43. Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13:2679–2694CrossRefGoogle Scholar
  44. Rolim SG, Ivanauskas NM, Rodrigues RR, Nascimento MT, Gomes JML, Folli DA, Couto HTZ (2006) Composição florística do estrato arbóreo da Floresta Estacional Semidecidual na planície aluvial do rio Doce, Linhares, ES, Brasil. Acta Bot Brasílica 20:549–561CrossRefGoogle Scholar
  45. Ruf F, Schroth G (2004) Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, Fonseca GAB, Harvey CA, Vasconcelos HL, Gascon C, Izar AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, pp 107–134Google Scholar
  46. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  47. Sambuichi RHR (2002) Fitossociologia e diversidade de espécies arbóreas em cabruca (mata atlântica raleada sobre plantação de cacau) na Região Sul da Bahia, Brasil. Acta Bot Brasilica 16:89–101CrossRefGoogle Scholar
  48. Sambuichi RHR (2006) Estrutura e dinâmica do componente arbóreo em área de cabruca na região cacaueira do sul da Bahia, Brasil. Acta Bot Brasilica 20:943–954CrossRefGoogle Scholar
  49. Sambuichi RHR, de Oliveira RLRM, Mariano Neto E, Thevenin JMR, Jesus Junior CP, Oliveira RL, Pelicao MC (2008) Conservation status of ten endemic trees from the Atlantic forest in the south of Bahia -Brazil. Natureza & Conservacão 6:208–225Google Scholar
  50. Sambuichi RHR, Haridasan M (2007) Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodivers Conserv 16:3681–3701CrossRefGoogle Scholar
  51. Sambuichi RHR, Vidal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Mello DLN, Ahnert D, Baligar VC (2012) Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodivers Conserv 21:1055–1077CrossRefGoogle Scholar
  52. Sansevero JBB, Prieto PV, Moraes LFD, Rodrigues JFP (2011) Natural regeneration in plantations of native trees in lowland Brazilian Atlantic Forest: community structure, diversity, and dispersal syndromes. Restor Ecol 19:379–389CrossRefGoogle Scholar
  53. Schroth G, Bede LC, Paiva AO, Cassano CR, Amorim AM, Faria D, Mariano-Neto E, Martini AMZ, Sambuichi RHR, Lôbo RN (2015) Contribution of agroforests to landscape carbon storage. Mitig Adapt Strategies Glob Chang 20:1175–1190CrossRefGoogle Scholar
  54. Schroth G, Faria D, Araujo M, Bede L, Van Bael SA, Cassano CR, Oliveira LC, Delabie JHC (2011) Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodivers Conserv 20:1635–1654CrossRefGoogle Scholar
  55. Schroth G, Fonseca GAB, Harvey CA, Vasconcelos HL, Gascon C, Izar AMN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DCGoogle Scholar
  56. Schroth G, Garcia E, Griscom BW, Teixeira WG, Barros LP (2016a) Commodity production as restoration driver in the Brazilian Amazon? Pasture re-agro-forestation with cocoa (Theobroma cacao) in southern Para. Sustainability Sci 11:277–293CrossRefGoogle Scholar
  57. Schroth G, Jeusset A, Gomes AS, Florence CT, Coelho NAP, Faria D, Läderach P (2016b) Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitig Adapt Strategies Glob Chang 21:67–80CrossRefGoogle Scholar
  58. Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macêdo JLV (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agroforest Syst 53:85–102CrossRefGoogle Scholar
  59. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, New York, NYGoogle Scholar
  60. Suganuma MS, Durigan G (2015) Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restor Ecol 23:238–251CrossRefGoogle Scholar
  61. Suguio K, Martin L, Domingues J, (1982) Evolução da planície costeira do Rio Doce (ES) durante o quaternário: influência das flutuações do nível do mar. In: Suguio K, De Meis MRM, Tessler MG (eds) Anais do IV Simpósio do Quaternário no Brasil. pp 93–116, Sociedade Brasileira de Geologia, Rio de Janeiro, RJ, BrasilGoogle Scholar
  62. Tabarelli M, Peres CA (2002) Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: implications for forest regeneration. Biol Conserv 106:165–176CrossRefGoogle Scholar
  63. Thomas W, Carvalho AMVDE, Amorim AMA, Garrison J, Arbeláez AL (1998) Plant endemism in two forests in southern Bahia, Brazil. Biodivers Conserv 7:311–322CrossRefGoogle Scholar
  64. Toyama H, Kajisa T, Tagane S, Mase K, Chhang P, Samreth V, Ma V, Sokh H, Ichihashi R, Onoda Y, Mizoue N, Yahara T (2015) Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia. Philos Trans R Soc Lond B:Biol Sci 370:20140008CrossRefGoogle Scholar
  65. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  66. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agroforest Syst 88:947–956CrossRefGoogle Scholar
  67. Vieira DLM, Holl KD, Peneireiro F (2009) Agro-Successional Restoration as a Strategy to Facilitate Tropical Forest Recovery. Restor Ecol 17:451–459CrossRefGoogle Scholar
  68. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505CrossRefGoogle Scholar
  69. Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183CrossRefGoogle Scholar
  70. Wildi O (2013) Data analysis in vegetation ecology. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  71. Wood GAR, Lass RA (2001) Cocoa. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  72. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506(7486):89–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratório de Restinga e Floresta AtlânticaUniversidade Federal do Espírito SantoSão MateusBrazil
  2. 2.Institute of Applied Economic ResearchBrasíliaBrazil
  3. 3.C.P. 513SantarémBrazil
  4. 4.Laboratório de Ciências AmbientaisUniversidade Estadual do Norte FluminenseCampos dos GoytacazesBrazil
  5. 5.Departamento de Ciências BiológicasUniversidade Federal do Espírito SantoVitoriaBrazil

Personalised recommendations