Environmental Management

, Volume 59, Issue 3, pp 419–430

Effects of Post-Fire Plant Cover in the Performance of Two Cordilleran Cypress (Austrocedrus chilensis) Seedling Stocktypes Planted in Burned Forests of Northeastern Patagonia, Argentina

  • María F. Urretavizcaya
  • Héctor E. Gonda
  • Guillermo E. Defossé


Cordilleran cypress (Austrocedrus chilensis [D.Don] Pic. Serm. et Bizarri) forests occupy 140,000 ha along a sharp environmental gradient of central Andean-Patagonia in Argentina. Every summer, about 3200 ha of these forests are affected by wildfires, taking thereafter long time to recover. To accelerate forest recovery, we determined in xeric and mesic cypress stands burned 5 and 2 year before whether survival and growth of two planted cypress seedling stocktypes are affected by plant cover and contrasting precipitation conditions. Two experiments were conducted on each site, involving 100 replicates of two seedling stocktypes, having each significantly different morphological attributes. The experiments comprised a dry and humid growing season on each site. Both stocktypes performed similarly within stands, but differently between stands. In the xeric stand, plant cover had neutral effects on seedling survival, favored seedling height growth in the dry season, and was negative on collar diameter and stem growth. In the mesic site, high plant cover favored survival and height growth, but was inconsequential for collar diameter and stem growth. In this short-term post-fire period, and independent of precipitation received during both seasons (dry or humid), plant cover appears as playing a facilitative role, having neutral or even positive effects on survival and growth of planted seedlings. During the early post-fire successional stages, and besides seedling stocktype, there was a synergistic balance between light and soil moisture that seems to benefit planted seedling performance in burned cypress forests, and especially in mesic sites.


Temperate forests Post-fire forest restoration Ciprés de la cordillera Facilitation Morphological attributes Seedlings survival and growth 


  1. Arbuinés M (1998) Relevamiento y estudio del régimen climático de la provincia del Chubut. Estación Experimental Agropecuaria Chubut, INTA, TrelewGoogle Scholar
  2. Bertness MD, Callaway R (1994) Positive interactions in communities. Tree 9:191–193Google Scholar
  3. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  4. Bustos JC, Rocchi VC (1993) Caracterización termopluviométrica de veinte estaciones metereológicas de Río Negro y Neuquén. Informe Técnico INTA EEA Bariloche, BarilocheGoogle Scholar
  5. Callaway, RM (2007) Positive interactions and interdependence in plant communities. Springer, Dordrecht, The NetherlandsGoogle Scholar
  6. CIEFAP and MAyDS (2016) Actualización de la Clasificación de Tipos Forestales y Cobertura del Suelo de la Región Bosque Andino Patagónico. Informe Final CIEFAP, Esquel, Argentina. https://drive.google.com/open
  7. Contardi L, Gonda H (2012) La producción de plantines forestales en el Mundo y en la Patagonia Andina. In: Contardi L, Gonda H, Tolone G, Salimbeni J (eds) Producción de plantas en viveros forestales. CFI, CIEFAP, UNPSJB, Buenos Aires, pp 13–24Google Scholar
  8. Dalla Salda G, Schlichter T (2005) Plantaciones de ciprés de la cordillera bajo protección de pino ponderosa. Revista de Información sobre Investigación y Desarrollo Agropecuario 5:74–79. Idia XXIGoogle Scholar
  9. De Fina AL (1972) El Clima de la región de los Bosques Andino-Patagónicos Argentinos. In: Dimitri MJ (ed) La Región de los Bosques Andino-Patagónicos, Sinopsis general. Colección Científica del INTA, Buenos Aires, pp 35–58Google Scholar
  10. Dezzotti A, Sancholuz L (1991) Los bosques de Austrocedrus chilensis en Argentina: ubicación, estructura y crecimiento. Bosque 12:43–53CrossRefGoogle Scholar
  11. Duryea, ML (1985) Evaluating seedling quality: principles, procedures, and predictive abilities of major tests: proceedings of the workshop held October, 1984. Forest Research Laboratory, Oregon State University, Corvallis, pp 16–18Google Scholar
  12. Enricci, JA and DS Massone (2000) Áreas degradadas de la Región de los Bosques Andino Patagónicos: una nueva técnica para contribuir con su restauración, Esquel. UNPSJB, ArgentinaGoogle Scholar
  13. Folk RS, Grossnickle SC (1997) Determining field performance potential with the use of limiting environmental conditions. New For 13:121–138CrossRefGoogle Scholar
  14. Gobbi M (1999) Austrocedrus chilensis management: effects on microsites and regeneration. J Ecol Environ Sci 25:71–83Google Scholar
  15. Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New For 43:711–738CrossRefGoogle Scholar
  16. Gyenge JE, Fernández ME, Schlichter T (2007) Influence of radiation and drought on gas exchange of Austrocedrus chilensis seedlings. Bosque 28(3):220–225CrossRefGoogle Scholar
  17. Généré B, Garriou D (1999) Stock quality and field performance of Douglas fir seedlings under varying degrees of water stress. Ann For Sci 56:501–510CrossRefGoogle Scholar
  18. Harper JL (1977) Population Biology of Plants. Academis Press, LondonGoogle Scholar
  19. Hasse, DL (2007) Morphological and physiological evaluations of seedling quality. In: national proceedings: forest and conservation nursery associations 2006. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, pp 3–8.Google Scholar
  20. Holmgren M (2000) Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation? Oikos 90:67–78CrossRefGoogle Scholar
  21. Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275CrossRefGoogle Scholar
  22. Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975CrossRefGoogle Scholar
  23. Kitzberger T, Steinaker DF, Veblen TT (2000) Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81:1914–1924CrossRefGoogle Scholar
  24. Kleinbaum, DG and Klein M (2002) Logistic regression: A self-learning text. Springer-Verlag, New York, Inc.Google Scholar
  25. Landis, TD and Dumroese RK (2006) Applying the target plant concept to nursery stock quality. In: plant quality: a key to success in forest establishment. COFORD Conference, National Council for Forest Research and Development, Dublin, pp 1–10.Google Scholar
  26. Larcher, W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg, Germany.Google Scholar
  27. Letourneau F (2006) Estudio de las interacciones positivas y negativas sobre el crecimiento de Austrocedrus chilensis durante una etapa inicial de desarrollo, en un matorral sucesional mésico. Universidad Nacional del Comahue, BarilocheGoogle Scholar
  28. Letourneau FJ, Andenmatten E, Schlichter T (2004) Effect of climatic conditions and tree size on Austrocedrus chilensis-shrud interactions in northern Patagonia. Forest Ecol Manag 191:29–38CrossRefGoogle Scholar
  29. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  30. McCook L (1994) Understanding ecological community succession: causal models and theories, a review. Vegetatio 110:115–147CrossRefGoogle Scholar
  31. Mexal JG (2012) Calidad de plantines: atributos morfológicos. In: Contardi L, Gonda H, Tolone G, Salimbeni J (eds) Producción de plantas en viveros forestales. CFI, CIEFAP, UNPSJB, Buenos Aires, pp 41–51Google Scholar
  32. Oudkerk L, Pastorino M, Gallo L (2003) Siete años de experiencia en la restauración postincendio de un bosque de Ciprés de la Cordillera. Patagonia Forestal 9:4–7Google Scholar
  33. Owston PW, Walters GA, Molina R (1992) Selection of planting stock, inoculation with mycorrhizal fungi, and use of direct seeding. In: Hobbs S, Tesch S, Owton P, Stewart R, Tappeiner IJ, Wells G (eds) Reforestation practices in Southwestern Oregon and Northern California. Forest Research Laboratory, Oregon State University, Corvallis, OR, pp 310–327Google Scholar
  34. Pafundi L, Urretavizcaya MF, Defossé GE (2014) Improving survival and growth of planted Austrocedrus chilensis seedlings in disturbed patagonian forests of Argentina by managing understory vegetation. Environ Manage 54:1412–1420CrossRefGoogle Scholar
  35. Palacios G, Navarro Cerrillo RM, del Campo A, Toral M (2009) Site preparation, stock quality and planting date effect on early establishment of Holm oak (Quercus ilex L.) seedlings. Ecol Eng 35:38–46CrossRefGoogle Scholar
  36. Pastorino M, Aparicio A, Azpilicueta MM (2015) Regiones de Procedencia del Ciprés de la Cordillera y bases conceptuales para el manejo de sus recursos genéticos en Argentina. Ediciones INTA, Buenos AiresGoogle Scholar
  37. Petriţan I, von Lüpke B, Petriţan A (2012) Response of planted beech (Fagus sylvatica L.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings to herbaceous and small shrubs control on clearcuts. J For Res 17:164–174CrossRefGoogle Scholar
  38. Rovere A (2000) Condiciones ambientales de la regeneración del ciprés de la cordillera (Austrocedrus chilensis). Bosque 21:57–64CrossRefGoogle Scholar
  39. SAyDS (2013) Estadística de Incendios Forestales. Buenos Aires, Argentina, ISSN 1850-7239 (versión digital) / ISSN 1850-7220 (versión impresa), Secretaría de Ambiente y Desarrollo Sustentable de la NaciónGoogle Scholar
  40. Seabloom EW, van der Valk AG (2003) Plant diversity, composition, and invasion of restored and natural prairie pothole wetlands: implications for restoration. Wetlands 23:1–12CrossRefGoogle Scholar
  41. Siegel S (1957) Nonparametric statistics. Am Stat 11:13–19Google Scholar
  42. Urretavizcaya MF (2010) Propiedades del suelo en bosques quemados de Austrocedrus chilensis en Patagonia, Argentina. Bosque 31:140–149CrossRefGoogle Scholar
  43. Urretavizcaya MF, Defossé G (2013) Effects of nurse shrubs and tree shelters on the survival and growth of two Austrocedrus chilensis seedling types in a forest restoration trial in semiarid Patagonia, Argentina. Ann For Sci 70:21–30CrossRefGoogle Scholar
  44. Urretavizcaya MF, Defossé GE, Gonda HE (2012) Effect of sowing season, plant cover, and climatic variability on seedling emergence and survival in burned Austrocedrus chilensis forests. Restor Ecol 20:131–140CrossRefGoogle Scholar
  45. Urretavizcaya MF, Defossé G (2004) Soil seed bank of Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina. Forest Ecol Manag 187:361–372CrossRefGoogle Scholar
  46. Urretavizcaya MF, Defossé G, Gonda HE (2006) Short-term effects of fire on plant cover and soil conditions in two Austrocedrus chilensis (cypress) forests in Patagonia, Argentina. Ann For Sci 63:63–71CrossRefGoogle Scholar
  47. Valladares F, Vilagrosa A, Peñuelas Rubira JL, Ogaya R, Camarero JJ, Sisó S, Gil-Pelegrín E (2004) Estrés hídrico:ecofisiología y escalas de sequía. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Naturaleza y Parques Nacionales. Ministerio de Medio Ambiente, Madrid, pp 163–190Google Scholar
  48. Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of Southern South America. In: Enright NJ, Hill RS (eds) Ecology of the Southern Conifers. University Press, Melbourne, pp 120–129Google Scholar
  49. Villalba R, Veblen TT (1997) Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Can J Forest Res 27:580–597Google Scholar
  50. Waring, RH and Schlesinger WH (1985) Forest ecosystems. Concepts and management. Academic Press, Inc. Orlando, Florida, USAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • María F. Urretavizcaya
    • 1
    • 2
  • Héctor E. Gonda
    • 1
    • 3
  • Guillermo E. Defossé
    • 1
    • 2
    • 3
  1. 1.Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP)EsquelArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET)EsquelArgentina
  3. 3.Facultad de IngenieríaUniversidad Nacional de la Patagonia San Juan BoscoSede EsquelArgentina

Personalised recommendations