Environmental Management

, Volume 58, Issue 1, pp 164–174 | Cite as

Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

  • Jaime FagúndezEmail author
  • Pedro P. Olea
  • Pablo Tejedo
  • Patricia Mateo-Tomás
  • David Gómez


The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.


Farmland biodiversity Cereal-steppe agro-ecosystems Maize Wheat Alien species High Nature Value farming 



Surveys were carried out under the permit (number EP/LE/281/2007) of the Dirección General del Medio Natural, Consejería de Medio Ambiente, Junta de Castilla y León. We thank Ángel de Frutos for technical assistance and Eduardo García for field assistance. We also thank two anonymous reviewers that commented on the first version of this manuscript. Soil analyses have been performed by Manuel López Nieves and Xabier Pombal at the University of Santiago de Compostela. Elsa Pouillard performed the questionnaires to land owners. This research has been financed by the projects Junta de Castilla y León (SEK02B06), Ministerio de Educación y Ciencia (CGL2006-05047/BOS) and FEDER funds. P.M.T. was supported by a postdoctoral grant funded by Consejería de Educación, Ciencia y Cultura de la Junta de Comunidades de Castilla-La Mancha and Fondo Social Europeo.

Supplementary material

267_2016_691_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Allan JD (1975) Components of diversity. Oecologia 18:359–367CrossRefGoogle Scholar
  2. Andreasen C, Streibig JC (2011) Evaluation of changes in weed flora in arable fields of Nordic countries—based on Danish long-term surveys. Weed Res 51:214–226CrossRefGoogle Scholar
  3. Andreasen C, Stryhn H (2008) Increasing weed flora in Danish arable fields and its importance for biodiversity. Weed Res 48:1–9CrossRefGoogle Scholar
  4. Belda A, Martinez-Perez JE, Peiro V, Seva E, Arques J (2011) Main landscape metrics affecting abundance and diversity of game species in a semi-arid agroecosystem in the mediterranean region. Span J Agric Res 9:1197–1212CrossRefGoogle Scholar
  5. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  6. Brotons L, Mañosa S, Estrada J (2004) Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodivers Conserv 13:1039–1058CrossRefGoogle Scholar
  7. Caraveli H (2000) A comparative analysis on intensification and extensification in mediterranean agriculture: dilemmas for LFAs policy. J Rural Stud 16:231–242CrossRefGoogle Scholar
  8. Castroviejo S. et al. (eds). (1986–2010) Flora iberica. CSIC, MadridGoogle Scholar
  9. Cimalova S, Lososová Z (2009) Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition. Plant Ecol 203:45–57CrossRefGoogle Scholar
  10. Colwell RK (2006) EstimateS: Statistical Estimation of Species Richness and Shared Species from. Samples. Version 8.0.0.
  11. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727CrossRefGoogle Scholar
  12. Concepción ED, Fernández-González F, Díaz M (2012) Plant diversity partitioning in Mediterranean croplands: effects of farming intensity, field edge, and landscape context. Ecol Appl 22:972–981  CrossRefGoogle Scholar
  13. Crawley MJ (2007) The R book. John Wiley & Sons, ChicheterCrossRefGoogle Scholar
  14. De Frutos A, Olea PP (2008) Importance of the premigratory areas for the conservation of lesser kestrel: space use and habitat selection during the post-fledging period. Anim Conserv 11:224–233CrossRefGoogle Scholar
  15. De Frutos A, Olea PP, Mateo-Tomás P (2015) Responses of medium-and large-sized bird diversity to irrigation in dry cereal agroecosystems across spatial scales. Agric Ecosyst Environ 207:141–152CrossRefGoogle Scholar
  16. European Commission. (2011) Agriculture and rural development.
  17. Fagúndez J (2015) The paradox of arable weeds: diversity, conservation, and ecosystem services of the unwanted. In: Benkeblia N (ed) Agroecology, ecosystems and sustainability. CRC Press, Boca RatonGoogle Scholar
  18. FAO (1998). World reference base for soil resources. RomeGoogle Scholar
  19. Farfán MA, Duarte J, Vargas JM, Fa JE (2012) Effects of human induced land-use changes on the distribution of the Iberian hare. J Zool 286:258–265CrossRefGoogle Scholar
  20. Firbank Les G, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc (B) 363:777–787CrossRefGoogle Scholar
  21. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  22. Fried G, Norton LR, Reboud X (2008) Environmental and management factors determining weed species composition and diversity in France. Agric Ecosyst Environ 128:68–76CrossRefGoogle Scholar
  23. Fried G, Petit S, Dessaint F, Reboud X (2009) Arable weed decline in Northern France: crop edges as refugia for weed conservation? Biol Conserv 142:238–243CrossRefGoogle Scholar
  24. Gabriel D, Tscharntke T (2007) Insect pollinated plants benefit from organic farming. Agric Ecosyst Environ 118:43–48CrossRefGoogle Scholar
  25. Gabriel D, Roschewitz I, Tscharntke T, Thies C (2006) Beta diversity at different spatial scales: plant communities in organic and conventional agriculture. Ecol Appl 16:2011–2021CrossRefGoogle Scholar
  26. García-Ruíz JM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81:1–11CrossRefGoogle Scholar
  27. González-Estébanez FJ, García-Tejero S, Mateo-Tomás P, Olea PP (2011) Effects of irrigation and landscape heterogeneity on butterfly diversity in Mediterranean farmlands. Agric Ecosyst Environ 144:262–270CrossRefGoogle Scholar
  28. Greenacre M (2010) Biplots in practice. Fundación BBVA, BilbaoGoogle Scholar
  29. Hawes C, Squire GR, Hallett PD, Watson CA, Young MW (2010) Arable plant communities as indicators of farming practice. Agric Ecosyst Environ 138:17–26CrossRefGoogle Scholar
  30. Henckel L, Börger L, Meiss H, Gaba S, Bretagnolle V (2015) Organic fields sustain weed metacommunity dynamics in farmland landscapes. Proc R Soc Lond B 282:20150002CrossRefGoogle Scholar
  31. Henle K, Alard D, Clitherow J, Cobb P, Firbank L, Kull T, McCracken D, Moritz RFA, Niemelä J, Rebane M, Wascher D, Watt A, Young J (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric Ecosyst Environ 124:60–71CrossRefGoogle Scholar
  32. Holm LR, Plucknett DL, Pancho JV, Herberger JP (1991) The world’s worst weeds; distribution and biology., Cynodon dactylon (L.) PersKrieger, Malabar, pp 25–31Google Scholar
  33. Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44:41–49CrossRefGoogle Scholar
  34. Horowitz M (1996) Bermudagrass (Cynodon dactylon): a history of the weed and its control in Israel. Phytoparasitica 24:305–320CrossRefGoogle Scholar
  35. Hyvönen T, Salonen J (2002) Weed species diversity and community composition in cropping practices at two intensity levels—a six-year experiment. Plant Ecol 154:73–81CrossRefGoogle Scholar
  36. Hyvönen T, Ketoja T, Salonen J, Jalli H, Tiainen J (2003) Weed species diversity and community composition in organic and conventional cropping of spring cereals. Agric Ecosyst Environ 97:131–149CrossRefGoogle Scholar
  37. IGME (1994). Geological Map of the Peninsula, Balearic and Canary Islands. 1:1.000.000. MadridGoogle Scholar
  38. Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121:196–210CrossRefGoogle Scholar
  39. José-María L, Armengot L, Blanco-Moreno JM, Bassa M, Sans FX (2010) Effects of agricultural intensification on plant diversity in Mediterranean dryland cereal fields. J Appl Ecol 47:832–840CrossRefGoogle Scholar
  40. José-María L, Armengot L, Chamorro L, Sans FX (2013) The conservation of arable weeds at crop edges of barley fields in northeast Spain. Ann Appl Biol 163:47–55CrossRefGoogle Scholar
  41. Juárez-Escario A, Valls J, Solé-Senan XO, Conesa JA (2013) A plant-traits approach to assessing the success of alien weed species in irrigated Mediterranean orchards. Ann Appl Biol 162:200–213CrossRefGoogle Scholar
  42. Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC (2012) Intensive agriculture erodes β-diversity at large scales. Ecol Lett 15:963–970CrossRefGoogle Scholar
  43. Kleijn D, Baquero RA, Clough Y, Díaz M, De Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–257CrossRefGoogle Scholar
  44. Kleijn D, Kohler F, Báldi A, Batáry P, Concepción ED, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall EJ, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc B 276:903–909CrossRefGoogle Scholar
  45. Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13CrossRefGoogle Scholar
  46. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  47. Litskas VD, Aschonitis VG, Antonopoulos VZ (2010) Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection. Env Monit Assess 163:347–359CrossRefGoogle Scholar
  48. Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89CrossRefGoogle Scholar
  49. Ministerio de Medio Ambiente y Medio Rural y Marino (MARM) (2009) Capítulo 3: distribución general del suelo según usos y aprovechamientos. Anuario de Estadística 2009.
  50. Monaco TJ, Weller SC, Ashton FM (2002) Weed science: principles and practices, 4th edn. Wiley, New YorkGoogle Scholar
  51. Monteagudo L, Moreno JL, Picazo F (2012) River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales. Water Res 46:2759–2771CrossRefGoogle Scholar
  52. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2011) Vegan: community ecology package. R package version 1.17-10.
  53. Oñate JJ (2009) Regadío y ecología: exigencias medioambientales. In: Gómez-Limón JA, Calatrava J, Garrido A, Sáez FJ, Xabadia A (eds) La economía del agua de riego en España. Fundación CajamarGoogle Scholar
  54. Oñate JJ, Atance I, Bardají I, Llusia D (2007) Modelling the effects of alternative CAP policies for the Spanish high-nature value cereal-steppe systems. Agric Syst 94:247–260CrossRefGoogle Scholar
  55. Østergård H, Fijnckh MR, Fontaine L, Goldringer I, Hoad SP, Kristensen K, Lammerts van Bueren ET, Mascher F, Munk L, Wolfe MS (2009) Time for a shift in crop production: embracing complexity through diversity at all levels. J Sci Food Agric 89:1439–1445CrossRefGoogle Scholar
  56. Paracchini ML, Petersen J-E, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe. An estimate of the distribution patterns on the basis of land cover and biodiversity data. European Commission Joint Research Centre, Institute for Environment and Sustainability. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  57. Penas PA, García ME, Herrero L (1995) Series de vegetación. Altas del medio natural de la Provincia de León. Instituto Tecnológico Geominero de España y Diputación de León, LeónGoogle Scholar
  58. Petit S, Munier-Jolain N, Bretagnolle V, Bockstaller C, Gaba S, Cordeau S, Lechenet M, Mézière D, Colbach N (2015) Ecological intensification through pesticide reduction: weed control, weed biodiversity and sustainability in arable farming. Environ Manage 56:1078–1090CrossRefGoogle Scholar
  59. Pinke G, Pál R (2009) Floristic composition and conservation value of the stubble-field weed community, dominated by Stachys annua in western Hungary. Biologia 64:279–291CrossRefGoogle Scholar
  60. Pinke G, Pál R, Botta-Dukát Z, Chytrý M (2009) Weed vegetation and its conservation value in three management systems of Hungarian winter cereals on base-rich soils. Weed Res 49:544–551CrossRefGoogle Scholar
  61. Pinke G, Karácsony P, Czúcz B, Botta-Dukát Z, Lengyel A (2012) The influence of environment, management and site context on species composition of summer arable weed vegetation in Hungary. Appl Veg Sci 15:136–144CrossRefGoogle Scholar
  62. Poggio SL, Chaneton EJ, Ghersa CM (2010) Landscape complexity differentially affects alpha, beta, and gamma diversities of plants occurring in fencerows and crop fields. Biol Conserv 143:2477–2486CrossRefGoogle Scholar
  63. Ponce C, Bravo C, García de León D, Magaña M, Alonso JC (2011) Effects of organic farming on plant and arthropod communities: a case study in Mediterranean dryland cereal. Agric Ecosyst Environ 141:193–203CrossRefGoogle Scholar
  64. Potts GR, Ewald JA, Aebischer NJ (2010) Long-term changes in the flora of the cereal ecosystem on the Sussex Downs, England, focusing on the years 1968–2005. J Appl Ecol 47:215–226CrossRefGoogle Scholar
  65. R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  66. Romero A, Chamorro L, Sans FX (2008) Weed diversity in crop edges and inner fields of organic and conventional dryland winter cereal crops in NE Spain. Agric Ecosyst Environ 124:97–104CrossRefGoogle Scholar
  67. Sanz-Elorza M, Dana ED, Sobrino E (2004) Atlas de las Plantas alóctonas invasoras en España. Dirección General para la biodiversidad, Madrid, p 384Google Scholar
  68. Šilc U, Vrbničanin S, Božić D, Čarni A, Stevanović ZD (2009) Weed vegetation in the north-western Balkans: diversity and species composition. Weed Res 49:602–612CrossRefGoogle Scholar
  69. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365CrossRefGoogle Scholar
  70. Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agicultural intensification and land-use change on the European arable flora. Proc R Soc (B) 279:1421–1429CrossRefGoogle Scholar
  71. Suárez F, Naveso MA, De Juana E (1997) Farming in the drylands of Spain: birds of the pseudosteppes. In: Pain D, Pienkowski MW (eds) Farming and birds in Europe. Academic Press, London, pp 297–330Google Scholar
  72. Sutcliffe OL, Kay QON (2000) Changes in the arable flora of central southern England since the 1960s. Biol Conserv 93:1–8CrossRefGoogle Scholar
  73. Türe C, Böcük H (2008) Investigation of threatened arable weeds and their conservation status in Turkey. Weed Res 48:289–296CrossRefGoogle Scholar
  74. Tutin TG et al. (eds) (1964–80) Flora Europaea, vol. 1–5, Cambridge University PressGoogle Scholar
  75. van der Velde M, Wriedt G, Bouraoui F (2010) Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric Ecosyst Environ 135:90–97CrossRefGoogle Scholar
  76. Wagner HH, Wildi O, Ewald KC (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecol 15:219–227CrossRefGoogle Scholar
  77. Whittingham MJ, Krebs JR, Swetnam RD, Vickery JA, Wilson JD, Freckleton RP (2007) Should conservation strategies consider spatial generality? Farmland birds show regional not national patterns of habitat association. Ecol Lett 10:25–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jaime Fagúndez
    • 1
    Email author
  • Pedro P. Olea
    • 2
  • Pablo Tejedo
    • 2
  • Patricia Mateo-Tomás
    • 3
    • 4
  • David Gómez
    • 5
  1. 1.Facultade de CienciasUniversidade da CoruñaA CoruñaSpain
  2. 2.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCMCiudad RealSpain
  4. 4.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  5. 5.Estudios y Proyectos Linea S.L.ValladolidSpain

Personalised recommendations